Skip to main content

Advertisement

Log in

The Effect of Docosahexaenoic Acid on Visual Evoked Potentials in a Mouse Model of Parkinson’s Disease: The Role of Cyclooxygenase-2 and Nuclear Factor Kappa-B

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of docosahexaenoic acid (DHA) on visual evoked potentials (VEPs) in a mice model of Parkinson’s disease (PD). Mice model was created by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and DHA was given by gavage. Cyclooxygenase-2 (COX-2), caspase-3 activities, nuclear factor kappa-B (NF-κB) and prostaglandin E2 (PGE2) levels were determined in substantia nigra (SN) and retina. Cyclooxygenase-2 intensities were also determined immunohistochemically. The tyrosine hydroxylase (TH) immunolabelling was significantly decreased in MPTP group compared to control. Docosahexaenoic acid decreased dopaminergic neuron death in MPTP + DHA group when compared to MPTP group. Mice treated with MPTP showed motor deficits as compared to control. Significant improvement was observed in MPTP + DHA group when compared to MPTP group. Treatment with MPTP significantly increased the activity of COX-2 and total COX in SN when compared to the control group. Docosahexaenoic acid caused a significant decrease in total COX and COX-2 activity in SN of mice given MPTP. Cyclooxygenase-2 showed strong immunostaining in MPTP group when compared to other groups in SN. Levels of PGE2 increased in MPTP group when compared to control in SN. Docosahexaenoic acid treatment in MPTP group reduced PGE2 in SN. Nuclear factor kappa-B levels were found to be decreased in SN of MPTP group. The mean latencies of P1, N1, P2, N2, P3, N3, P4, N4, and P5 VEP components were significantly prolonged in MPTP group when compared to control. In MPTP + DHA group, the mean latencies of all components except P5 returned to control values. Current data shows that DHA treatment improves prolonged VEPs latencies and locomotor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams J (2001) Proteasome inhibition in cancer: development of PS-341. Semin Oncol 28:613–619

    Article  PubMed  CAS  Google Scholar 

  • Araki T, Mizutani H, Matsubara M, Imai Y, Mizugaki M, Itoyama Y (2001) Nitric oxide synthase inhibitors cause motor deficits in mice. Eur Neuropsychopharmacol 11:125–133

    Article  PubMed  CAS  Google Scholar 

  • Barbato L, Rinalduzzi S, Laurenti M, Ruggieri S, Accornero N (1994) Color VEPs in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 92:169–172

    Article  PubMed  CAS  Google Scholar 

  • Barbeau A, Roy M, Bernier G, Campanella G, Paris S (1987) Ecogenetics of Parkinson’s disease: prevalence and environmental aspects in rural areas. Can J Neurol Sci 14:36–41

    PubMed  CAS  Google Scholar 

  • Bazan NG (2009) Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot Essent Fatty Acids 81:205–211

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  PubMed  CAS  Google Scholar 

  • Bodis-Wollner I (1997) Visual electrophysiology in Parkinson’s disease: PERG, VEP and visual P300. Clin Electroencephalogr 28:143–147

    PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Onofrj M (1982) System diseases and visual evoked potential diagnosis in neurology: changes due to synaptic malfunction. Ann N Y Acad Sci 388:327–348

    Article  PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Onofrj M (1987) The visual system in Parkinson’s disease. Adv Neurol 45:323–327

    PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Yahr MD (1978) Measurements of visual evoked potentials in Parkinson’s disease. Brain 101:661–671

    Article  PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Yahr M (1987) Visual dysfunction in Parkinson’s disease. Loss in spatiotemporal contrast sensitivity. Brain 110(Pt 6):1675–1698

    Article  PubMed  Google Scholar 

  • Boudrault C, Bazinet RP, Kang JX, Ma DW (2010) Cyclooxygenase-2 and n-6 PUFA are lower and DHA is higher in the cortex of fat-1 mice. Neurochem Int 56:585–589

    Article  PubMed  CAS  Google Scholar 

  • Bourre JM, Bonneil M, Clement M, Dumont O, Durand G, Lafont H, Nalbone G, Piciotti M (1993) Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukot Essent Fatty Acids 48:5–15

    Article  PubMed  CAS  Google Scholar 

  • Bousquet M, Saint-Pierre M, Julien C, Salem N Jr, Cicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. Faseb J 22:1213–1225

    Article  PubMed  CAS  Google Scholar 

  • Boyd JD, Jang H, Shepherd KR, Faherty C, Slack S, Jiao Y, Smeyne RJ (2007) Response to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta. Brain Res 1175:107–116

    Article  PubMed  CAS  Google Scholar 

  • Bulens C, Meerwaldt JD, Van der Wildt GJ, Van Deursen JB (1987) Effect of levodopa treatment on contrast sensitivity in Parkinson’s disease. Ann Neurol 22:365–369

    Article  PubMed  CAS  Google Scholar 

  • Buttner T, Kuhn W, Muller T, Heinze T, Puhl C, Przuntek H (1996) Chromatic and achromatic visual evoked potentials in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 100:443–447

    PubMed  CAS  Google Scholar 

  • Buttner T, Muller T, Kuhn W (2000) Effects of apomorphine on visual functions in Parkinson’s disease. J Neural Transm 107:87–94

    Article  PubMed  CAS  Google Scholar 

  • Cansev M, Ulus IH, Wang L, Maher TJ, Wurtman RJ (2008) Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson’s disease. Neurosci Res 62:206–209

    Article  PubMed  CAS  Google Scholar 

  • Carlton PS, Gopalakrishnan R, Gupta A, Liston BW, Habib S, Morse MA, Stoner GD (2002) Piroxicam is an ineffective inhibitor of N-nitrosomethylbenzylamine-induced tumorigenesis in the rat esophagus. Cancer Res 62:4376–4382

    PubMed  CAS  Google Scholar 

  • Catalan J, Moriguchi T, Slotnick B, Murthy M, Greiner RS, Salem N Jr (2002) Cognitive deficits in docosahexaenoic acid-deficient rats. Behav Neurosci 116:1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13:1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Cudeiro J, Rivadulla C (1999) Sight and insight—on the physiological role of nitric oxide in the visual system. Trends Neurosci 22:109–116

    Article  PubMed  CAS  Google Scholar 

  • de Meira Santos Lima M, Braga Reksidler A, Marques Zanata S, Bueno Machado H, Tufik S, Vital MA (2006) Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res 1101:117–125

    Article  PubMed  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  PubMed  CAS  Google Scholar 

  • Disshon KA, Dluzen DE (1997) Estrogen as a neuromodulator of MPTP-induced neurotoxicity: effects upon striatal dopamine release. Brain Res 764:9–16

    Article  PubMed  CAS  Google Scholar 

  • Dyer RS, Howell WE, MacPhail RC (1981) Dopamine depletion slows retinal transmission. Exp Neurol 71:326–340

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Li D, Fung PC, Pei Z, Ramsden DB, Ho SL (2003) COX-2-deficient mice are less prone to MPTP-neurotoxicity than wild-type mice. Neuroreport 14:1927–1929

    Article  PubMed  CAS  Google Scholar 

  • Galli C, White HB Jr, Paoletti R (1971) Lipid alterations and their reversion in the central nervous system of growing rats deficient in essential fatty acids. Lipids 6:378–387

    Article  PubMed  CAS  Google Scholar 

  • Gasser T (2001) Molecular genetics of Parkinson’s disease. Adv Neurol 86:23–32

    PubMed  CAS  Google Scholar 

  • Gawel MJ, Das P, Vincent S, Rose FC (1981) Visual and auditory evoked responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 44:227–232

    Article  PubMed  CAS  Google Scholar 

  • Gemici B, Tan R, Ongut G, Izgut-Uysal VN (2010) Expressions of inducible nitric oxide synthase and cyclooxygenase-2 in gastric ischemia-reperfusion: role of angiotensin II. J Surg Res 161:126–133

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103:987–1041

    Article  PubMed  CAS  Google Scholar 

  • German OL, Insua MF, Gentili C, Rotstein NP, Politi LE (2006) Docosahexaenoic acid prevents apoptosis of retina photoreceptors by activating the ERK/MAPK pathway. J Neurochem 98:1507–1520

    Article  PubMed  CAS  Google Scholar 

  • Ghilardi MF, Bodis-Wollner I, Onofrj MC, Marx MS, Glover AA (1988a) Spatial frequency-dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain 111(Pt 1):131–149

    Article  PubMed  Google Scholar 

  • Ghilardi MF, Chung E, Bodis-Wollner I, Dvorzniak M, Glover A, Onofrj M (1988b) Systemic 1-methyl,4-phenyl,1-2-3-6-tetrahydropyridine (MPTP) administration decreases retinal dopamine content in primates. Life Sci 43:255–262

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K (2007) Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 104:18754–18759

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE, Pahan K (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci 29:13543–13556

    Article  PubMed  CAS  Google Scholar 

  • Green P, Glozman S, Yavin E (2001) Ethyl docosahexaenoate-associated decrease in fetal brain lipid peroxide production is mediated by activation of prostanoid and nitric oxide pathways. Biochim Biophys Acta 1531:156–164

    PubMed  CAS  Google Scholar 

  • Hacioglu G, Agar A, Yargicoglu P (2006) The role of docosahexaenoic acid on visual evoked potentials in one kidney-one clip hypertension. Acta Ophthalmol Scand 84:488–494

    Article  PubMed  CAS  Google Scholar 

  • Hacioglu G, Kose O, Aslan M, Agar A (2007) Beneficial effects of docosahexaenoic acid on active avoidance performance in 1K-1C hypertensive rats. Neurobiol Learn Mem 87:159–165

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Haobam R, Sindhu KM, Chandra G, Mohanakumar KP (2005) Swim-test as a function of motor impairment in MPTP model of Parkinson’s disease: a comparative study in two mouse strains. Behav Brain Res 163:159–167

    Article  PubMed  CAS  Google Scholar 

  • Harnois C, Di Paolo T (1990) Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci 31:2473–2475

    PubMed  CAS  Google Scholar 

  • Hetzler BE, Boyes WK, Creason JP, Dyer RS (1988) Temperature-dependent changes in visual evoked potentials of rats. Electroencephalogr Clin Neurophysiol 70:137–154

    Article  PubMed  CAS  Google Scholar 

  • Hoang T, Choi DK, Nagai M, Wu DC, Nagata T, Prou D, Wilson GL, Vila M, Jackson-Lewis V, Dawson VL, Dawson TM, Chesselet MF, Przedborski S (2009) Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic Biol Med 47:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:665–670

    Article  PubMed  CAS  Google Scholar 

  • Kabuto H, Amakawa M, Mankura M, Yamanushi TT, Mori A (2009) Docosahexaenoic acid ethyl ester enhances 6-hydroxydopamine-induced neuronal damage by induction of lipid peroxidation in mouse striatum. Neurochem Res 34:1299–1303

    Article  PubMed  CAS  Google Scholar 

  • Kang JM, Park HJ, Choi YG, Choe IH, Park JH, Kim YS, Lim S (2007) Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res 1131:211–219

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Kurosaki R, Oki C, Araki T (2004) Arundic acid, an astrocyte-modulating agent, protects dopaminergic neurons against MPTP neurotoxicity in mice. Brain Res 1030:66–73

    Article  PubMed  CAS  Google Scholar 

  • Kidd PM (2000) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 5:502–529

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Araki T, Itoyama Y, Takeshita M, Ohta T, Oshima Y (1997) Effects of L-dopa and bromocriptine on haloperidol-induced motor deficits in mice. Life Sci 61:2529–2538

    Article  PubMed  CAS  Google Scholar 

  • Kremer JM, Lawrence DA, Jubiz W, DiGiacomo R, Rynes R, Bartholomew LE, Sherman M (1990) Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis. Clinical and immunologic effects. Arthritis Rheum 33:810–820

    Article  PubMed  CAS  Google Scholar 

  • Langheinrich T, Tebartz van Elst L, Lagreze WA, Bach M, Lucking CH, Greenlee MW (2000) Visual contrast response functions in Parkinson’s disease: evidence from electroretinograms, visually evoked potentials and psychophysics. Clin Neurophysiol 111:66–74

    Article  PubMed  CAS  Google Scholar 

  • Lee JA, Song HY, Ju SM, Lee SJ, Kwon HJ, Eum WS, Jang SH, Choi SY, Park JS (2009a) Differential regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression by superoxide dismutase in lipopolysaccharide stimulated RAW 264.7 cells. Exp Mol Med 41:629–637

    Article  PubMed  CAS  Google Scholar 

  • Lee SA, Kim HJ, Chang KC, Baek JC, Park JK, Shin JK, Choi WJ, Lee JH, Paik WY (2009b) DHA and EPA down-regulate COX-2 expression through suppression of NF-kappaB activity in LPS-treated human umbilical vein endothelial cells. Korean J Physiol Pharmacol 13:301–307

    Article  PubMed  CAS  Google Scholar 

  • Levant B, Ozias MK, Carlson SE (2007) Specific brain regions of female rats are differentially depleted of docosahexaenoic acid by reproductive activity and an (n-3) fatty acid-deficient diet. J Nutr 137:130–134

    PubMed  CAS  Google Scholar 

  • Lockwood AH (2000) Pesticides and parkinsonism: is there an etiological link? Curr Opin Neurol 13:687–690

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Udaka F, Tamura A, Oda M, Kubori T, Nishinaka K, Kameyama M (2005) The relation between visual hallucinations and visual evoked potential in Parkinson disease. Clin Neuropharmacol 28:79–82

    Article  PubMed  Google Scholar 

  • Mattammal MB, Strong R, Lakshmi VM, Chung HD, Stephenson AH (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease. J Neurochem 64:1645–1654

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin P, Zhou Y, Ma T, Liu J, Zhang W, Hong JS, Kovacs M, Zhang J (2006) Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia 53:567–582

    Article  PubMed  Google Scholar 

  • Meissner W, Hill MP, Tison F, Gross CE, Bezard E (2004) Neuroprotective strategies for Parkinson’s disease: conceptual limits of animal models and clinical trials. Trends Pharmacol Sci 25:249–253

    Article  PubMed  CAS  Google Scholar 

  • Michael-Titus AT (2007) Omega-3 fatty acids and neurological injury. Prostaglandins Leukot Essent Fatty Acids 77:295–300

    Article  PubMed  CAS  Google Scholar 

  • Mills RD, Sim CH, Mok SS, Mulhern TD, Culvenor JG, Cheng HC (2008) Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J Neurochem 105:18–33

    Article  PubMed  CAS  Google Scholar 

  • Mitra N, Mohanakumar KP, Ganguly DK (1992) Dissociation of serotoninergic and dopaminergic components in acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Brain Res Bull 28:355–364

    Article  PubMed  CAS  Google Scholar 

  • Murthy M, Hamilton J, Greiner RS, Moriguchi T, Salem N Jr, Kim HY (2002) Differential effects of n-3 fatty acid deficiency on phospholipid molecular species composition in the rat hippocampus. J Lipid Res 43:611–617

    Article  PubMed  CAS  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  PubMed  CAS  Google Scholar 

  • Ogawa N, Mizukawa K, Hirose Y, Kajita S, Ohara S, Watanabe Y (1987) MPTP-induced parkinsonian model in mice: biochemistry, pharmacology and behavior. Eur Neurol 26(Suppl 1):16–23

    Article  PubMed  CAS  Google Scholar 

  • Onofrj M, Bodis-Wollner I (1982) Dopaminergic deficiency causes delayed visual evoked potentials in rats. Ann Neurol 11:484–490

    Article  PubMed  CAS  Google Scholar 

  • Onofrj M, Ghilardi MF, Basciani M, Gambi D (1986) Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. J Neurol Neurosurg Psychiatry 49:1150–1159

    Article  PubMed  CAS  Google Scholar 

  • Pawlosky RJ, Bacher J, Salem N Jr (2001) Ethanol consumption alters electroretinograms and depletes neural tissues of docosahexaenoic acid in rhesus monkeys: nutritional consequences of a low n-3 fatty acid diet. Alcohol Clin Exp Res 25:1758–1765

    Article  PubMed  CAS  Google Scholar 

  • Peachey NS, Ball SL (2003) Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol 107:13–36

    Article  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Przybylkowski A, Kurkowska-Jastrzebska I, Joniec I, Ciesielska A, Czlonkowska A, Czlonkowski A (2004) Cyclooxygenases mRNA and protein expression in striata in the experimental mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to mouse. Brain Res 1019:144–151

    Article  PubMed  CAS  Google Scholar 

  • Puskas LG, Bereczki E, Santha M, Vigh L, Csanadi G, Spener F, Ferdinandy P, Onochy A, Kitajka K (2004) Cholesterol and cholesterol plus DHA diet-induced gene expression and fatty acid changes in mouse eye and brain. Biochimie 86:817–824

    Article  PubMed  CAS  Google Scholar 

  • Reksidler AB, Lima MM, Zanata SM, Machado HB, da Cunha C, Andreatini R, Tufik S, Vital MA (2007) The COX-2 inhibitor parecoxib produces neuroprotective effects in MPTP-lesioned rats. Eur J Pharmacol 560:163–175

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Cansev M, Wurtman RJ (2007) Oral supplementation with docosahexaenoic acid and uridine-5′-monophosphate increases dendritic spine density in adult gerbil hippocampus. Brain Res 1182:50–59

    Article  PubMed  CAS  Google Scholar 

  • Samadi P, Gregoire L, Rouillard C, Bedard PJ, Di Paolo T, Levesque D (2006) Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol 59:282–288

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  PubMed  CAS  Google Scholar 

  • Schmidt N, Ferger B (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 108:1263–1282

    Article  PubMed  CAS  Google Scholar 

  • Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224

    Article  PubMed  Google Scholar 

  • Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125:109–125

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos AP (1989) Summary of the NATO advanced research workshop on dietary omega 3 and omega 6 fatty acids: biological effects and nutritional essentiality. J Nutr 119:521–528

    PubMed  CAS  Google Scholar 

  • Singh J, Hamid R, Reddy BS (1997) Dietary fat and colon cancer: modulation of cyclooxygenase-2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis. Cancer Res 57:3465–3470

    PubMed  CAS  Google Scholar 

  • Strain GM, Tedford BL (1993) Flash and pattern reversal visual evoked potentials in C57BL/6J and B6CBAF1/J mice. Brain Res Bull 32:57–63

    Article  PubMed  CAS  Google Scholar 

  • Tanriover G, Seval-Celik Y, Ozsoy O, Akkoyunlu G, Savcioglu F, Hacioglu G, Demir N, Agar A (2010) The effects of docosahexaenoic acid on GDNF and NTN in bilateral rat model of Parkinson`s disease. Folia Histochem Cytobiol 48:434–441

    Google Scholar 

  • Teismann P, Vila M, Choi DK, Tieu K, Wu DC, Jackson-Lewis V, Przedborski S (2003) COX-2 and neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 991:272–277

    Article  PubMed  CAS  Google Scholar 

  • Temma K, Shimoya K, Zhang Q, Kimura T, Wasada K, Kanzaki T, Azuma C, Koyama M, Murata Y (2004) Effects of 4-hydroxy-2-nonenal, a marker of oxidative stress, on the cyclooxygenase-2 of human placenta in chorioamnionitis. Mol Hum Reprod 10:167–171

    Article  PubMed  CAS  Google Scholar 

  • Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36:885–895

    Article  PubMed  CAS  Google Scholar 

  • Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G (2006) Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflamm 3:6

    Article  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Pei Z, Zhang W, Liu B, Langenbach R, Lee C, Wilson B, Reece JM, Miller DS, Hong JS (2005) MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. Faseb J 19:1134–1136

    Article  PubMed  CAS  Google Scholar 

  • Weisinger HS, Vingrys AJ, Bui BV, Sinclair AJ (1999) Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina. Invest Ophthalmol Vis Sci 40:327–338

    PubMed  CAS  Google Scholar 

  • Wurtman RJ, Ulus IH, Cansev M, Watkins CJ, Wang L, Marzloff G (2006) Synaptic proteins and phospholipids are increased in gerbil brain by administering uridine plus docosahexaenoic acid orally. Brain Res 1088:83–92

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Tang X, Shao X, Feng L, Wu N, Yao K (2007) Parthenolide protects human lens epithelial cells from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and caspase-9. Cell Res 17:565–571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Akdeniz University Research Projects Unit (Project no: 2007.01.0103.016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Agar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozsoy, O., Tanriover, G., Derin, N. et al. The Effect of Docosahexaenoic Acid on Visual Evoked Potentials in a Mouse Model of Parkinson’s Disease: The Role of Cyclooxygenase-2 and Nuclear Factor Kappa-B. Neurotox Res 20, 250–262 (2011). https://doi.org/10.1007/s12640-011-9238-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9238-y

Keywords

Navigation