Skip to main content
Log in

Behavioral, Neurochemical, and Electrophysiological Changes in an Early Spontaneous Mouse Model of Nigrostriatal Degeneration

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In idiopathic Parkinson’s disease, clinical symptoms do not emerge until consistent neurodegeneration has occurred. The late appearance of symptoms implies the existence of a relatively long preclinical period during which several disease-induced neurochemical changes take place to mask the existence of the disease and delay its clinical manifestations. The aim of this study was to examine the neurochemical, neurophysiological, and behavioral changes induced by the loss of nigrostriatal innervation in the En1+/−;En2−/− mouse, in the 10 months following degeneration, compared to En2 null mutant mice. Behavioral analysis (Pole-test, Beam-walking test, and Inverted grid test) and field potential recordings in the striatum indicated that loss of ~70% of nigrostriatal neurons produced no significant functional effects until 8 months of age, when En1+/−;En2−/− animals started to show frank motor deficits and electrophysiological alterations in corticostriatal plasticity. Similarly, alterations in dopamine homeostasis, dopamine turnover, and dopamine innervation were observed in aged animals compared to young En1+/−;En2−/− mice. These data suggests that in En1+/−;En2−/− mice nigrostriatal degeneration in the substantia nigra is functionally compensated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JR, van Netten H, Schulzer M et al (2005) PET in LRRK2 mutations: comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain 128:2777–2785

    Article  PubMed  Google Scholar 

  • Albéri L, Sgadò P, Simon HH (2004) Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131:3229–3236

    Article  PubMed  Google Scholar 

  • Bergstrom BP, Schertz KE, Weirick T et al (2001) Partial, graded losses of dopamine terminals in the rat caudate-putamen: an animal model for the study of compensatory adaptation in preclinical parkinsonism. J Neurosci Methods 106:15–28

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O et al (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Jaber M, Gonon F et al (2000) Adaptive changes in the nigrostriatal pathway in response to increased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration in the mouse. Eur J Neurosci 12:2892–2900

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Dovero S, Prunier C et al (2001) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Neurosci 21:6853–6861

    PubMed  CAS  Google Scholar 

  • Calabresi P, Saiardi A, Pisani A et al (1997) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 17:4536–4544

    PubMed  CAS  Google Scholar 

  • Calne DB, Langston JW, Martin WR et al (1985) Positron emission tomography after MPTP: observations relating to the cause of Parkinson’s disease. Nature 317:246–248

    Article  PubMed  CAS  Google Scholar 

  • Cannon JR, Tapias V, Na HM et al (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290

    Article  PubMed  CAS  Google Scholar 

  • Corsini GU, Maggio R, Vaglini F (2002) Molecular and cellular events regulating dopamine neuron survival. In: di Chiara GD (ed) Handbook of experimental pharmacology. Dopamine in the CNS II, vol 154. Springer-Verlag, Berlin Heidelberg, pp 321–386

    Google Scholar 

  • de la Fuente-Fernández R (2007) Presynaptic mechanisms of motor complications in Parkinson disease. Arch Neurol 64:141–143

    Article  PubMed  Google Scholar 

  • Fleming SM, Zhu C, Fernagut PO et al (2004) Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187:418–429

    Article  PubMed  CAS  Google Scholar 

  • Fournier M, Vitte J, Garrigue J et al (2009) Parkin deficiency delays motor decline and disease manifestation in a mouse model of synucleinopathy. PLoS One 4(8):e6629

    Article  PubMed  Google Scholar 

  • George S, Mok SS, Nurjono M et al (2010) α-Synuclein transgenic mice reveal compensatory increases in Parkinson’s disease-associated proteins DJ-1 and Parkin and have enhanced α-Synuclein and PINK1 levels after rotenone treatment. Mol Neurosci 42:243–254

    Article  CAS  Google Scholar 

  • Geracitano R, Paolucci E, Prisco S et al (2003) Altered long-term corticostriatal synaptic plasticity in transgenic mice overexpressing human CU/ZN superoxide dismutase (GLY(93) → ALA) mutation. Neuroscience 118:399–408

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Millen KJ, Herrup K et al (1996) Impaired motor learning performance in cerebellar En-2 mutant mice. Behav Neurosci 110:126–133

    Article  PubMed  CAS  Google Scholar 

  • Hernandez DG, Paisán-Ruíz C, McInerney-Leo A et al (2005) Clinical and positron emission tomography of Parkinson’s disease caused by LRRK2. Ann Neurol 57:453–456

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1972) Dopamine and extrapyramidal motor function and dysfunction. Res Publ Assoc Res Nerv Ment Dis 50:390–415

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1975) Parkinson’s disease and its chemotherapy. Biochem Pharmacol 24:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL, Herrup K, Auerbach BA et al (1991) Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251:1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Kang MJ, Gil SJ, Koh HC (2009) Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice. Toxicol Lett 188:148–152

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ (1992) Mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced destruction of dopaminergic neurons. In: Herken H, Hucho F (eds) Handbook of experimental pharmacology, vol 102. Selective neurotoxicity. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Matsuura K, Kabuto H, Makino H et al (1997) Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J Neurosci Methods 73:45–48

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Akiyama H et al (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24:574–576

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Kang UJ (2006) Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 21:1595–1606

    Article  PubMed  Google Scholar 

  • Meredith GE, Totterdell S, Potashkin JA et al (2008) Modeling PD pathogenesis in mice: advantages of a chronic MPTP protocol. Parkinsonism Relat Disord 14(Suppl 2):S112–S115

    Article  PubMed  Google Scholar 

  • Moore RY, Zigmond MJ (1994) Compensatory mechanisms in central neurodegenerative disease. In: Calne DB (ed) Neurodegenerative diseases. W.B. Saunders Company, Philadelphia

    Google Scholar 

  • Piccini P, Burn DJ, Ceravolo R et al (1999) The role of inheritance in sporadic Parkinson’s disease/evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol 45:577–582

    Article  PubMed  CAS  Google Scholar 

  • Pifl C, Hornykiewicz O (2006) Dopamine turnover is upregulated in the caudate/putamen of asymptomatic MPTP-treated rhesus monkeys. Neurochem Int 49:519–524

    Article  PubMed  CAS  Google Scholar 

  • Saueressig H, Burrill J, Goulding M (1999) Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development 126:4201–4212

    PubMed  CAS  Google Scholar 

  • Sgadò P, Albéri L, Gherbassi D et al (2006) Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc Natl Acad Sci USA 103:15242–15247

    Article  PubMed  Google Scholar 

  • Simon HH, Saueressig H, Wurst W et al (2001) Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 21:3126–3134

    PubMed  CAS  Google Scholar 

  • Sonnier L, Le Pen G, Hartmann A et al (2007) Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J Neurosci 27:1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Sossi V, de la Fuente-Fernández R, Schulzer M et al (2007) Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study. Ann Neurol 62:468–474

    Article  PubMed  Google Scholar 

  • Sossi V, Dinelle K, Topping GJ et al (2009) Dopamine transporter relation to levodopa-derived synaptic dopamine in a rat model of Parkinson’s: an in vivo imaging study. J Neurochem 109:85–92

    Article  PubMed  CAS  Google Scholar 

  • Tillerson JL, Caudle WM, Reveron ME et al (2002) Detection of behavioral impairments correlated to neurochemical deficits in mice treated with moderate doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Exp Neurol 178:80–90

    Article  PubMed  CAS  Google Scholar 

  • Viaggi C, Vaglini F, Pardini C et al (2007) CYP 2E1 mutant mice are resistant to DDC-induced enhancement of MPTP toxicity. J Neural Transm 72(Suppl):159–163

    Article  CAS  Google Scholar 

  • Zigmond MJ, Acheson AL, Stachowiak MK, Stricker EM (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical parkinsonism. Arch Neurol 41:856–861

    PubMed  CAS  Google Scholar 

  • Zigmond MJ, Abercrombie ED, Berger TW et al (1990) Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci 13:290–296

    Article  PubMed  CAS  Google Scholar 

  • Zigmond MJ, Abercrombie ED, Berger TW et al (1993) Compensatory responses to partial loss of dopaminergic neurons: studies with 6-hydroxydopamine. In: Schneider JS, Gupta M (eds) Current concepts in Parkinson’s disease research. Hans Huber Pub, Berne, Switzerland, pp 99–140

    Google Scholar 

Download references

Acknowledgments

We thank Martyn Goulding (Salk Institute, La Jolla, CA) and Alex Joyner (Memorial Sloan-Kettering Cancer Center, New York, NY) for initially providing the En1-tauLacZ and the En2 mutant mice. We thank Yuri Bozzi for helpful comments on the manuscript and Tommaso Schiavinotto for help with the statistical analysis. The authors would like also to thank Mrs Ornella Baroni for her precious help in animal care. This work was supported by PRIN grants “prot nr. 2005055445, anno 2005”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Sgadò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgadò, P., Viaggi, C., Pinna, A. et al. Behavioral, Neurochemical, and Electrophysiological Changes in an Early Spontaneous Mouse Model of Nigrostriatal Degeneration. Neurotox Res 20, 170–181 (2011). https://doi.org/10.1007/s12640-010-9232-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9232-9

Keywords

Navigation