Skip to main content

Advertisement

Log in

Neonatal Iron Treatment Increases Apoptotic Markers in Hippocampal and Cortical Areas of Adult Rats

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Oxidative stress, cellular damage, and neuronal apoptosis are believed to underlie the progressive cognitive decline that accompanies natural aging and to be exacerbated in neurodegenerative diseases. Over the years, we have consistently demonstrated that iron neonatal treatment induces oxidative stress and memory deficits in adult rats, but the mechanisms underlying these effects remained undefined. The purpose of this study was to examine whether neonatal iron overload was associated with apoptotic cell death in adult and old rats. We analyzed Par-4 and caspase-3 immunoreactivity in specific brain areas including the hippocampus CA1, CA3 and dentate gyrus (DG), the adjacent cortex and the striatum in adult (3 months-old) and aged (24 months-old) rats from control (vehicle-treated) and neonatally iron-treated groups. Neonatal iron treatment consisted of a daily oral administration of 10 mg/kg of Fe+2, for three consecutive days, from post-natal 12–14. Control aged animals showed increased levels of both markers when compared to untreated adult animals. When adults were compared, iron-treated animals presented significantly higher Par-4 and caspase-3 immunoreactivities in CA1, CA3 and cortex. In the DG, this effect was statistically significant only for Par-4. Interestingly, when control and iron-treated aged animals were compared, a significant decrease in both apoptotic markers was observed in the later groups in the same areas. These results may be interpreted as an acceleration of aging progressive damages caused by iron overload and may contribute to a better understanding of the damaging potential of iron accumulation to brain function and the resulting increased susceptibility to neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JD, Mukherjee SK, Klaidman LK, Chang ML, Yasharel R (1996) Apoptosis and oxidative stress in the aging brain. Ann N Y Acad Sci 786:135–151

    Article  PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Hirsch EC, Agid Y (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12(3):603–610

    PubMed  CAS  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 10:595–600

    Article  Google Scholar 

  • Chan SL, Tammariello SP, Estus S, Mattson MP (1999) Prostate apoptosis response-4 mediates trophic factor withdrawal-induced apoptosis of hippocampal neurons: actions prior to mitochondrial dysfunction and caspase activation. J Neurochem 73(2):502–512

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Pavlick G, Karli D, Menzies SL, Palmer C (1995) A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 355(1):111–123

    Article  PubMed  CAS  Google Scholar 

  • Dal-Pizzol F, Klamt F, Frota ML Jr, Andrades ME, Caregnato FF, Vianna MM et al (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Brain Res Dev Brain Res 130(1):109–114

    Article  PubMed  CAS  Google Scholar 

  • de Lima MN, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JC, Dal-Pizzol F, Schröder N (2005a) Recognition memory impairment and brain oxidative stress by postnatal iron administration. Eur J Neurosci 21:2521–2528

    Article  PubMed  Google Scholar 

  • de Lima MN, Laranja DC, Caldana F, Grazziotin MM, Garcia VA, Dal-Pizzol F, Bromberg E, Schröder N (2005b) Selegiline protects against recognition memory impairments induced by neonatal iron treatment. Exp Neurol 196:177–183

    Article  PubMed  Google Scholar 

  • de Lima MN, Laranja DC, Caldana F, Bromberg E, Roesler R, Schröder N (2005c) Reversal of age-related deficits in object recognition memory in rats with l-deprenyl. Exp Gerontol 40:506–511

    Article  PubMed  Google Scholar 

  • de Lima MN, Presti-Torres J, Caldana F, Grazziotin MM, Scalco FS, Guimarães MR et al (2007) Desferoxamine reverses neonatal iron-induced recognition memory impairment in rats. Eur J Pharmacol 570:111–114

    Article  PubMed  Google Scholar 

  • de Lima MN, Presti-Torres J, Garcia VA, Guimarães MR, Scalco FS, Roesler R, Schröder N (2008) Amelioration of recognition memory impairment associated with iron loading or aging by the type 4-specific phosphodiesterase inhibitor rolipram in rats. Neuropharmacology 55:788–792

    Article  PubMed  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt4):1953–1975

    Article  PubMed  Google Scholar 

  • Dorszewska J, Adamczewska-Goncerzewicz Z, Szczech J (2004) Apoptotic proteins in the course of aging of central nervous system in the rat. Respir Physiol Neurobiol 139(2):145–155

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Rangnekar VM, Mattson MP (1999) Par-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J Neurochem 72(6):2312–2322

    Article  PubMed  CAS  Google Scholar 

  • Dwork AJ, Lawler G, Zybert PA, Durkin M, Osman M, Willson N et al (1990) An autoradiographic study of the uptake and distribution of iron by the brain of the young rat. Brain Res 518(1-2):31–39

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120

    Article  PubMed  CAS  Google Scholar 

  • El-Guendy N, Rangnekar VM (2003) Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp Cell Res 283(1):51–66

    Article  PubMed  CAS  Google Scholar 

  • Fernandez LL, Carmona M, Portero-Otin M, Naudi A, Pamplona R, Schröder N et al (2009) Effects of increased iron intake during the neonatal period on the brain of adult AbetaPP/PS1 transgenic mice. J Alzheimers Dis 19:1069–1080

    Google Scholar 

  • Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (1999) Neonatal iron exposure induces neurobehavioural in adult mice. Toxicol Appl Pharmacol 159(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (2000) Maze learning and motor activity deficits in adult mice induced by iron exposure during a critical postnatal period. Brain Res Dev Brain Res 119(1):65–74

    Article  PubMed  CAS  Google Scholar 

  • Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Fu W, Xie J, Luo H, Sells SF, Geddes JW et al (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat Med 4(8):957–962

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Xie J, Chang X, Zhang X, Du H (2001) Par-4 is a synaptic protein that regulates neurite outgrowth by altering calcium homeostasis and transcription factor AP-1 activation. Brain Res 903(1–2):13–25

    Article  PubMed  CAS  Google Scholar 

  • Kienzl E, Puchinger L, Jellinger K, Linert W, Stachelberger H, Jameson RF (1995) The role of transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 134:69–78

    Article  PubMed  Google Scholar 

  • Kooncumchoo P, Sharma S, Porter J, Govitrapong P, Ebadi M (2006) Coenzyme Q(10) provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J Mol Neurosci 28(2):125–141

    Article  PubMed  CAS  Google Scholar 

  • Lacelle C, Xu S, Wang E (2002) Identification of high caspase-3 mRNA expression as a unique signature profile for extremely old individuals. Mech Ageing Dev 123(8):1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Andersen JK, Kaur D (2006) Iron dysregulation and neurodegeneration: the molecular connection. Mol Interven 6(2):89–97

    Article  CAS  Google Scholar 

  • Lynch AM, Lynch MA (2001) The age-related increase in IL-1 type I receptor in rat hippocampus is coupled with an increase in caspase-3 activation. Eur J Neurosci 15(11):1779–1788

    Article  Google Scholar 

  • Mansour H, Chamberlain CG, Weible MW II, Hughes S, Chu Y, Chan-Ling T (2008) Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability. Aging Cell 7(4):526–540

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2):120–129

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Kroemer G (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 9(5):196–205

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Duan W, Chan SL, Camandola S (1999) Par-4: an emerging pivotal player in neuronal apoptosis and neurodegenerative disorders. J Mol Neurosci 13(1–2):17–30

    Article  PubMed  CAS  Google Scholar 

  • McKay SE, Purcell AL, Carew TJ (1999) Regulation of synaptic function by neurotrophic factors in vertebrates and invertebrates: implications for development and learning. Learn Mem 6(3):193–215

    PubMed  CAS  Google Scholar 

  • Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278(5337):412–419

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain:in stereotaxic coordinates, 6th edn. Academic Press, San Diego

    Google Scholar 

  • Polla AS, Polla LL, Polla BS (2003) Iron as the malignant spirit in successful ageing. Ageing Res Rev 2(1):25–37

    Article  PubMed  CAS  Google Scholar 

  • Reichmann H, Janetzky B, Riederer P (1995) Iron-dependent enzymes in Parkinson’s disease. J Neural Transm Suppl 46:157–164

    PubMed  CAS  Google Scholar 

  • Rohn TT (2008) Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer’s disease. Brain Res 1228:189–198

    Article  PubMed  CAS  Google Scholar 

  • Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9(1):3–5

    Article  PubMed  Google Scholar 

  • Schipper HM (2004) Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 3(3):265–301

    Article  PubMed  CAS  Google Scholar 

  • Schröder N, Fredriksson A, Vianna MRM, Roesler R, Izquierdo I, Archer T (2001) Memory deficits in adult rats following post natal iron administration. Behav Brain Res 124:77–85

    Article  PubMed  Google Scholar 

  • Sells SF, Wood DP Jr, Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA et al (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen dependent and independent prostate cells. Cell Growth Differ 5(4):457–466

    PubMed  CAS  Google Scholar 

  • Shimohama S, Tanino H, Fujimoto S (1999) Changes in caspase expression in Alzheimer’s disease: comparison with development and aging. Biochem Biophys Res Commun 256(2):381–384

    Article  PubMed  CAS  Google Scholar 

  • Stefanis L (2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11(1):50–62

    Article  PubMed  CAS  Google Scholar 

  • Swaiman KF (1991) Hallervorden-Spatz syndrome and brain iron metabolism. Arch Neurol 48(12):1285–1293

    PubMed  CAS  Google Scholar 

  • Taglialatela G, Gegg M, Perez-Polo JR, Williams LR, Rose GM (1996) Evidence for DNA fragmentation in the CNS of aged Fischer-344 rats. Neuroreport 7(5):977–980

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann. Neurol 53(Suppl 3): S61–S72

    Google Scholar 

  • Taylor EM, Morgan EH (1990) Developmental changes in transferrin and iron uptake by the brain in the rat. Brain Res Dev Brain Res 55(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • Taylor EM, Crowe A, Morgan EH (1991) Tranferrin and iron uptake by the brain: effects of altered iron status. J Neurochem 57:1584–1592

    Article  PubMed  CAS  Google Scholar 

  • Troy CM, Salvesen GS (2002) Caspases on the brain. J Neurosci Res 69(2):145–150

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Ben-Shachar D, Riederer P (1993) The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 8(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407(6805):802–809

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Gallorini M, Schunemann V, Trautwein AX, Gerlach M, Riederer P et al (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 76(6):1766–1773

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Wang J, Song N, Xie J, Jiang H (2009) Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+)-induced apoptosis in MES23.5 cells. Neurobiol Aging 30(9):1466–1476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by CNPq grant 476316/2006-5 and FAPERGS PROADE3 0521807 to Monica Vianna. Monica Vianna is supported by CNPq 312137/2006-0 fellowship, Nadja Schröder is supported by 301368/2006-6 fellowship, and Clivia Miwa is supported by CAPES-MEC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica R. M. Vianna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miwa, C.P., de Lima, M.N.M., Scalco, F. et al. Neonatal Iron Treatment Increases Apoptotic Markers in Hippocampal and Cortical Areas of Adult Rats. Neurotox Res 19, 527–535 (2011). https://doi.org/10.1007/s12640-010-9181-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9181-3

Keywords

Navigation