Skip to main content
Log in

Palmitoylethanolamide Protects Dentate Gyrus Granule Cells via Peroxisome Proliferator-Activated Receptor-Alpha

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Endocannabinoids like 2-arachidonoylglycerol strongly modulate the complex machinery of secondary neuronal damage and are shown to improve neuronal survival after excitotoxic lesion. Palmitoylethanolamide (PEA), the naturally occurring fatty acid amide of ethanolamine and palmitic acid, is an endogenous lipid known to mimic several effects of endocannabinoids even without binding to cannabinoid receptors. Here we show that PEA (0.001–1 μM) and the synthetic peroxisome proliferator-activated receptor (PPAR)-alpha agonist 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (Wy-14,643; 0.1–1 μM) reduced the number of microglial cells and protected dentate gyrus granule cells in excitotoxically lesioned organotypic hippocampal slice cultures (OHSCs). Treatment with the PPAR-alpha antagonist N-((2S)-2-(((1Z)-1-Methyl-3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-enyl)amino)-3-(4-(2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy)phenyl)propyl)propanamide (GW6471; 0.05–5 μM) blocked PEA-mediated neuroprotection and reduction of microglial cell numbers whereas the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenyl-benzamide (GW9662; 0.01–1 μM) showed no effects. Immunocytochemistry and Western blot analyses revealed a strong PPAR-alpha immunoreaction in BV-2 microglial cells and in HT22 hippocampal cells. Intensity and location of PPAR-alpha immunoreaction remained constant during stimulation with PEA (0.01 μM; 1–36 h). In conclusion our data provide evidence that (1) PEA counteracted excitotoxically induced secondary neuronal damage of dentate gyrus granule cells, (2) PPAR-alpha but not PPAR-gamma is the endogenous binding site for PEA-mediated neuroprotection, and (3) PEA may activate PPAR-alpha in microglial cells and hippocampal neurons to exert its neuroprotective effects. In addition to classical endocannabinoids, PEA-mediated PPAR-alpha activation represents a possible target for therapeutic interventions to mitigate symptoms of secondary neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benvenuti F, Lattanzi F, De Gori A, Tarli P (1968) Activity of some derivatives of palmitoylethanolamide on carragenin-induced edema in the rat paw. Boll Soc Ital Biol Sperimentale 44:809–813

    CAS  Google Scholar 

  • Berdyshev EV (2000) Cannabinoid receptors and the regulation of immune response. Chem Phys Lipids 108:169–190

    Article  CAS  PubMed  Google Scholar 

  • Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30:596–602

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, Staels B, Haegeman G, De Bosscher K (2009) PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proc Natl Acad Sci USA 106:7397–7402

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366

    Article  CAS  PubMed  Google Scholar 

  • Costa B, Conti S, Giagnoni G, Colleoni M (2002) Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: inhibition of nitric oxide and cyclo-oxygenase systems. Br J Pharmacol 137:413–420

    Article  CAS  PubMed  Google Scholar 

  • Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G (2008) The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain 139:541–550

    Article  CAS  PubMed  Google Scholar 

  • Cravatt BF, Lichtman AH (2002) The enzymatic inactivation of the fatty acid amide class of signaling lipids. Chem Phys Lipids 121:135–148

    Article  CAS  PubMed  Google Scholar 

  • Cristiano L, Cimini A, Moreno S, Ragnelli AM, Paola Cerù M (2005) Peroxisome proliferator-activated receptors (PPARs) and related transcription factors in differentiating astrocyte cultures. Neurosci 131:577–587

    Article  CAS  Google Scholar 

  • Culman J, Zhao Y, Gohlke P, Herdegen T (2007) PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 28:244–249

    Article  CAS  PubMed  Google Scholar 

  • Deplanque D, Bastide M, Bordet R (2000) Ischaemic preconditioning of the endothelium and smooth muscle of cerebral arteries. Trends Pharmacol Sci 21:332–333

    Article  CAS  PubMed  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    Article  CAS  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  CAS  PubMed  Google Scholar 

  • Franklin A, Parmentier-Batteur S, Walter L, Greenberg DA, Stella N (2003) Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci 23:7767–7775

    CAS  PubMed  Google Scholar 

  • Garcia-Ovejero D, Arevalo-Martin A, Petrosino S, Docagne F, Hagen C, Bisogno T, Watanabe M, Guaza C, Di Marzo V, Molina-Holgado E (2009) The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiol Dis 33:57–71

    Article  CAS  PubMed  Google Scholar 

  • Genovese T, Esposito E, Mazzon E, Di Paola R, Meli R, Bramanti P, Piomelli D, Calignano A, Cuzzocrea S (2008) Effects of palmitoylethanolamide on signaling pathways implicated in the development of spinal cord injury. J Pharmacol Exp Ther 326:12–23

    Article  CAS  PubMed  Google Scholar 

  • Gervois P, Chopin-Delannoy S, Fadel A, Dubois G, Kosykh V, Fruchart JC, Najib J, Laudet V, Staels B (1999) Fibrates increase human Rev-erbα expression in liver via anovel peroxisome proliferators-activates receptor response element. Mol Endocrinol 13:400–409

    Article  CAS  PubMed  Google Scholar 

  • Hailer NP, Wirjatijasa F, Roser N, Hischebeth GT, Korf HW, Dehghani F (2001) Astrocytic factors protect neuronal integrity and reduce microglial activation in an in vitro model of N-methyl-d-aspartate-induced excitotoxic injury in organotypic hippocampal slice cultures. Eur J Neurosci 14:315–326

    Article  CAS  PubMed  Google Scholar 

  • Hailer NP, Vogt C, Korf HW, Dehghani F (2005) Interleukin-1beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures. Eur J Neurosci 21:2347–2360

    Article  PubMed  Google Scholar 

  • Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045

    CAS  PubMed  Google Scholar 

  • Ho Y, Samarasinghe R, Knoch ME, Lewis M, Aizenman E, DeFranco DB (2008) Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death. Mol Pharmacol 74:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri MD, Elmes SJ, Richardson D, Barrett DA, Kendall DA, Mason R, Chapman V (2008) Evidence for a novel functional role of cannabinoid CB(2) receptors in the thalamus of neuropathic rats. Eur J Neurosci 27:1722–1730

    Article  CAS  PubMed  Google Scholar 

  • Jones DC, Ding X, Daynes RA (2002) Nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) is expressed in resting murine lymphocytes. The PPARalpha in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem 277:6838–6845

    Article  CAS  PubMed  Google Scholar 

  • Kleemann R, Gervois PP, Verschuren L, Staels B, Princen HM, Kooistra T (2003) Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFkappa B-C/EBP-beta complex formation. Blood 101:545–551

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Kreutz S, Böttger C, Grabiec U, Ghadban C, Korf HW, Dehghani F (2010) The cannabinoid WIN 55,212-2-mediated protection of dentate gyrus granule cells is driven by CB1 receptors and modulated by TRPA1 and Cav2.2 channels. Hippocampus, PMID: 20135626 (in press)

  • Kohl A, Dehghani F, Korf HW, Hailer NP (2003) The bisphosphonate clodronate depletes microglial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp Neurol 181:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kreutz S, Koch M, Ghadban C, Korf HW, Dehghani F (2007) Cannabinoids and neuronal damage: differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures. Exp Neurol 203:246–257

    Article  CAS  PubMed  Google Scholar 

  • Kreutz S, Koch M, Böttger C, Ghadban C, Korf HW, Dehghani F (2009) 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells. Glia 57:286–294

    Article  PubMed  Google Scholar 

  • Kuehl FA, Jacob TA, Ganley OH, Ormond RE, Meisinger MAP (1957) The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. J Am Chem Soc 79:5577–5578

    Article  CAS  Google Scholar 

  • Lambert DM, Vandevoorde S, Jonsson KO, Fowler CJ (2002) The palmitoylethanolamide family: a new class of anti-inflammatory agents? Curr Med Chem 9:663–674

    CAS  PubMed  Google Scholar 

  • Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, Piomelli D (2005a) The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol 67:15–19

    Article  CAS  PubMed  Google Scholar 

  • LoVerme J, La Rana G, Russo R, Calignano A, Piomelli D (2005b) The search for the palmitoylethanolamide receptor. Life Sci 77:1685–1698

    Article  CAS  PubMed  Google Scholar 

  • Mackie K, Stella N (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J 8:E298–E306

    PubMed  Google Scholar 

  • Maronde E, Pfeffer M, Glass Y, Stehle JH (2007) Transcription factor dynamics in pineal gland and liver of the Syrian hamster (Mesocricetus auratus) adapts to prevailing photoperiod. J Pineal Res 43:16–24

    Article  CAS  PubMed  Google Scholar 

  • Melis M, Pillolla G, Bisogno T, Minassi A, Petrosino S, Perra S, Muntoni AL, Lutz B, Gessa GL, Marsicano G, Di MV, Pistis M (2006) Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiol Dis 24:15–27

    Article  CAS  PubMed  Google Scholar 

  • Moreno S, Farioli-Vecchioli S, Cerù MP (2004) Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 123:131–145

    Article  CAS  PubMed  Google Scholar 

  • Muccioli GG, Stella N (2008) Microglia produce and hydrolyze palmitoylethanolamide. Neuropharmacology 54:16–22

    Article  CAS  PubMed  Google Scholar 

  • Murphy GJ, Holder JC (2000) PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21:469–474

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan SE, Kendall DA (2009) Cannabinoid activation of peroxisome proliferator-activated receptors: Potential for modulation of inflammatory disease. Immunobiol 2009 Oct 13 (Epub ahead of print)

  • Panikashvili D, Simeonidou C, Ben Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531

    Article  CAS  PubMed  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    Article  CAS  PubMed  Google Scholar 

  • Pozzo Miller LD, Mahanty NK, Connor JA, Landis DM (1994) Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists. Neuroscience 63:471–487

    Article  CAS  PubMed  Google Scholar 

  • Ramanan S, Kooshki M, Zhao W, Hsu FC, Robbins ME (2008) PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. Free Radic Biol Med 45:1695–1704

    Article  CAS  PubMed  Google Scholar 

  • Ross RA, Brockie HC, Pertwee RG (2000) Inhibition of nitric oxide production in RAW264.7 macrophages by cannabinoids and palmitoylethanolamide. Eur J Pharmacol 401:121–130

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A (1996) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci USA 93:3984–3989

    Article  CAS  PubMed  Google Scholar 

  • Stanciu M, DeFranco DB (2002) Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J Biol Chem 277:4010–4017

    Article  CAS  PubMed  Google Scholar 

  • Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW, DeFranco DB (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275:12200–12206

    Article  CAS  PubMed  Google Scholar 

  • Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T, Suhara Y, Takayama H, Waku K (2000) Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 275:605–612

    Article  CAS  PubMed  Google Scholar 

  • Vogt C, Hailer NP, Ghadban C, Korf HW, Dehghani F (2008) Successful inhibition of excitotoxic neuronal damage and microglial activation after delayed application of interleukin-1 receptor antagonist. J Neurosci Res 86:3314–3321

    Article  CAS  PubMed  Google Scholar 

  • Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23:1398–1405

    CAS  PubMed  Google Scholar 

  • Xu J, Storer PD, Chavis JA, Racke MK, Drew PD (2005) Agonists for the peroxisome proliferator-activated receptor-alpha and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res 81:403–411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the LOEWE Lipid Signaling Research Program and August Scheidel-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Dehghani.

Additional information

M. Koch and S. Kreutz contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, M., Kreutz, S., Böttger, C. et al. Palmitoylethanolamide Protects Dentate Gyrus Granule Cells via Peroxisome Proliferator-Activated Receptor-Alpha. Neurotox Res 19, 330–340 (2011). https://doi.org/10.1007/s12640-010-9166-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9166-2

Keywords

Navigation