Neurotoxicity Research

, Volume 19, Issue 1, pp 63–72 | Cite as

Neuromelanin Activates Microglia and Induces Degeneration of Dopaminergic Neurons: Implications for Progression of Parkinson’s Disease

  • Wei Zhang
  • Kester Phillips
  • Albert R. Wielgus
  • Jie Liu
  • Alberto Albertini
  • Fabio A. Zucca
  • Rudolph Faust
  • Steven Y. Qian
  • David S. Miller
  • Colin F. Chignell
  • Belinda Wilson
  • Vernice Jackson-Lewis
  • Serge Przedborski
  • Danielle Joset
  • John Loike
  • Jau-Shyong Hong
  • David Sulzer
  • Luigi Zecca
Article

Abstract

In Parkinson’s disease (PD), there is a progressive loss of neuromelanin (NM)-containing dopamine neurons in substantia nigra (SN) which is associated with microgliosis and presence of extracellular NM. Herein, we have investigated the interplay between microglia and human NM on the degeneration of SN dopaminergic neurons. Although NM particles are phagocytized and degraded by microglia within minutes in vitro, extracellular NM particles induce microglial activation and ensuing production of superoxide, nitric oxide, hydrogen peroxide (H2O2), and pro-inflammatory factors. Furthermore, NM produces, in a microglia-depended manner, neurodegeneration in primary ventral midbrain cultures. Neurodegeneration was effectively attenuated with microglia derived from mice deficient in macrophage antigen complex-1, a microglial integrin receptor involved in the initiation of phagocytosis. Neuronal loss was also attenuated with microglia derived from mice deficient in phagocytic oxidase, a subunit of NADPH oxidase, that is responsible for superoxide and H2O2 production, or apocynin, an NADPH oxidase inhibitor. In vivo, NM injected into rat SN produces microgliosis and a loss of tyrosine hydroxylase neurons. Thus, these results show that extracellular NM can activate microglia, which in turn may induce dopaminergic neurodegeneration in PD. Our study may have far-reaching implications, both pathogenic and therapeutic.

Keywords

Substantia nigra Neuroinflammation Microglia Neurodegenerative diseases 

Abbreviations

COX2

Cyclooxygenase 2

DA

Dopamine

DCF

Dichlorofluorescein

GABA

γ-Aminobutyric acid

GFAP

Glial filrillary acidic protein

H2O2

Hydrogen peroxide

IL

Interleukin

iNOS

Inducible NO synthase

iROS

Intracellular ROS

Mac-1

Macrophage antigen complex-1

Mac-1+/+

Wild-type Mac-1 mice

Mac-1−/−

Knockout Mac-1 mice

MIP-1α

Macrophage inflammatory protein-1α

NM

Neuromelanin

NO

Nitric oxide

PD

Parkinson’s disease

PHOX

Phagocytic oxidase

PHOX+/+

PHOX wild-type mice

PHOX−/−

PHOX-deficient mice

PMA

Phorbol ester myristate

ROS

Reactive oxygen species

SN

Substantia nigra

TH

Tyrosine hydroxylase

TH-ir

TH immunoreactive

TNF-α

Tumor necrosis factor-α

Supplementary material

12640_2009_9140_MOESM1_ESM.tif (270 kb)
Supplementary Fig. 1NM, microglia, expression of pro-inflammatory cytokines and reactive nitrogen species. NM in microglia enriched cultures induced gene expression of mRNA of TNF-α (a; mean ± SEM; n = 3; * P < 0.001), IL-1β (b; mean ± SEM; n = 3; * P < 0.05; ** P < 0.01; *** P < 0.001) and iNOS (c; mean ± SEM; n = 3; * P < 0.01; ** P < 0.001) in a dose dependent manner (TIFF 270 kb)
12640_2009_9140_MOESM2_ESM.tif (86 kb)
Supplementary Fig. 2NM activates microglia causing the release of NO. NM in microglia-enriched cultures induced a dose dependent release of NO measured as nitrite concentration (mean ± SEM; n = 3; * P < 0.01) (TIFF 86 kb)
12640_2009_9140_MOESM3_ESM.tif (273 kb)
Supplementary Fig. 3NM, microglia, expression of inflammatory molecules and ROS. NM in microglia enriched cultures induced a dose dependent gene expression of MIP-1α (a; mean ± SEM; n = 3; * P < 0.05; ** P < 0.001), COX2 (b; mean ± SEM; n = 3; * P < 0.01; ** P < 0.001) and gp91 (c; mean ± SEM; n = 3; * P < 0.01; ** P < 0.001) (TIFF 274 kb)
12640_2009_9140_MOESM4_ESM.tif (208 kb)
Supplementary Fig. 4Dose dependent release of iROS from microglia activated by NM and blockade by cytochalasin D. DCF fluorescence in response to NM, as an indicator of iROS production. (a) Indicates the dose dependence of iROS to increasing levels of NM (mean ± SEM; n = 4; * P < 0.05; ** P < 0.001). (b) iROS is inhibited by the phagocytic inhibitor, cytochalasin D (mean ± SEM; n = 3; * P < 0.05; ** P < 0.01) (TIFF 208 kb)

References

  1. Banati RB, Daniel SE, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13:221–227CrossRefPubMedGoogle Scholar
  2. Berger M, Budhu S, Lu E, Li Y, Loike D, Silverstein SC, Loike JD (2002) Different G(i)-coupled chemoattractant receptors signal qualitatively different functions in human neutrophils. J Leukoc Biol 71:798–806PubMedGoogle Scholar
  3. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69CrossRefPubMedGoogle Scholar
  4. Chen H, Zhang SM, Hernán MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1064CrossRefPubMedGoogle Scholar
  5. Cubells JF, Rayport S, Rajendran G, Sulzer D (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 14:2260–2271PubMedGoogle Scholar
  6. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909CrossRefPubMedGoogle Scholar
  7. Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991:1–14CrossRefPubMedGoogle Scholar
  8. Farkas E, De Jong GI, de Vos RA, Jansen Steur EN, Luiten PG (2000) Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol 100:395–402CrossRefPubMedGoogle Scholar
  9. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297CrossRefPubMedGoogle Scholar
  10. Hattori N, Sato S (2007) Animal models of Parkinson’s disease: similarities and differences between the disease and models. Neuropathology 27:479–483CrossRefPubMedGoogle Scholar
  11. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348CrossRefPubMedGoogle Scholar
  12. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316PubMedGoogle Scholar
  13. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605CrossRefPubMedGoogle Scholar
  14. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409CrossRefPubMedGoogle Scholar
  15. Liu J, He YY, Chignell CF, Clark J, Myers P, Saavedra JE, Waalkes MP (2005) Limited protective role of V-PYRRO/NO against cholestasis produced by alpha-naphthylisothiocyanate in mice. Biochem Pharmacol 70:144–151CrossRefPubMedGoogle Scholar
  16. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291PubMedGoogle Scholar
  17. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  18. Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118PubMedGoogle Scholar
  19. Shimohama S, Sawada H, Kitamura Y, Taniguchi T (2003) Disease model: Parkinson’s disease. Trends Mol Med 9:360–365CrossRefPubMedGoogle Scholar
  20. Staal RGW, Rayport S, Sulzer D (2006) Amperometric detection of dopamine exocytosis from synaptic terminals. In: Michael AC (ed) Electrochemical methods in neuroscience. In the series: Nicolelis M, Simon SA (eds) Methods and new frontiers In neuroscience. CRC Press, NYGoogle Scholar
  21. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 97:11869–11874CrossRefPubMedGoogle Scholar
  22. Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L (2008) Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 106:24–36CrossRefPubMedGoogle Scholar
  23. Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S (2003) D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112:892–901PubMedGoogle Scholar
  24. Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 17:500–502PubMedGoogle Scholar
  25. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771PubMedGoogle Scholar
  26. Zecca L, Pietra R, Goj C, Mecacci C, Radice D, Sabbioni E (1994) Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem 62:1097–1101CrossRefPubMedGoogle Scholar
  27. Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220CrossRefPubMedGoogle Scholar
  28. Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580CrossRefPubMedGoogle Scholar
  29. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848CrossRefPubMedGoogle Scholar
  30. Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, Panizza ML, Zucca FA, Deuschl G, Sievers J, Lucius R (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 116:47–55CrossRefPubMedGoogle Scholar
  31. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19:533–542CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wei Zhang
    • 1
  • Kester Phillips
    • 2
  • Albert R. Wielgus
    • 3
  • Jie Liu
    • 4
  • Alberto Albertini
    • 5
  • Fabio A. Zucca
    • 5
  • Rudolph Faust
    • 2
  • Steven Y. Qian
    • 3
  • David S. Miller
    • 3
  • Colin F. Chignell
    • 3
  • Belinda Wilson
    • 3
  • Vernice Jackson-Lewis
    • 6
  • Serge Przedborski
    • 7
  • Danielle Joset
    • 8
  • John Loike
    • 8
  • Jau-Shyong Hong
    • 3
  • David Sulzer
    • 2
  • Luigi Zecca
    • 5
  1. 1.Department of NeurologyBeijing Tiantan HospitalBeijingChina
  2. 2.Department of Psychiatry, Neurology and PharmacologyColumbia UniversityNew YorkUSA
  3. 3.Neuropharmacology Section, Laboratory of Pharmacology and ChemistryNational Institute of Environmental Health Sciences/National Institutes of HealthResearch Triangle ParkUSA
  4. 4.Inorganic Carcinogenesis Section, Laboratory of Comparative CarcinogenesisNational Cancer Institute, National Institute of Environmental Health Sciences/National Institutes of HealthResearch Triangle ParkUSA
  5. 5.Institute of Biomedical Technologies-Italian National Research CouncilSegrateItaly
  6. 6.Department of NeurologyColumbia UniversityNew YorkUSA
  7. 7.Department of Neurology, Pathology and Cell BiologyColumbia UniversityNew YorkUSA
  8. 8.Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations