Neurotoxicity Research

, Volume 17, Issue 4, pp 360–379 | Cite as

A Serial Analysis of Gene Expression Profile of the Alzheimer’s Disease Tg2576 Mouse Model

  • Amee J. George
  • Lavinia Gordon
  • Tim Beissbarth
  • Irene Koukoulas
  • R. M. Damian Holsinger
  • Victoria Perreau
  • Roberto Cappai
  • Seong-Seng Tan
  • Colin L. Masters
  • Hamish S. Scott
  • Qiao-Xin LiEmail author


Serial analysis of gene expression (SAGE), a technique that allows for the simultaneous detection of expression levels of the entire genome without a priori knowledge of gene sequences, was used to examine the transcriptional expression pattern of the Tg2576 mouse model of Alzheimer’s disease (AD). Pairwise comparison between the Tg2576 and nontransgenic SAGE libraries identified a number of differentially expressed genes in the Tg2576 SAGE library, some of which were not previously revealed by the microarray studies. Real-time PCR was used to validate a panel of genes selected from the SAGE analysis in the Tg2576 mouse brain, as well as the hippocampus and temporal cortex of sporadic AD and normal age-matched controls. NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 5 (NDUFA5) and FXYD domain-containing ion transport regulator 6 (FXYD6) were found to be significantly decreased in the Tg2576 mouse brain and AD hippocampus. PTEN-induced putative kinase 1 (PINK1), phosphatidylethanolamine binding protein (PEBP), crystalline μ (CRYM), and neurogranin (NRGN) were significantly decreased in AD tissues. The gene ontologies represented in the Tg2576 data were statistically analyzed and demonstrated a significant under-representation of genes involved with G-protein-coupled receptor signaling and odorant binding, while genes significantly over-represented were focused on cellular communication and cellular physiological processes. The novel approach of profiling the Tg2576 mouse brain using SAGE has identified different genes that could subsequently be examined for their potential as peripheral diagnostic and prognostic markers for Alzheimer’s disease.


Serial analysis of gene expression (SAGE) Alzheimer’s disease Tg2576 Amyloid precursor protein Amyloid-β Transgenic mice 




Alzheimer’s disease


Amyloid protein precursor


APP with the Swedish mutation


Expressed sequence tag




Gene ontology


Mouse Genome Informatics




Postmortem interval


Serial analysis of gene expression



This work was supported in part by grants from the National Health and Medical Research Council of Australia #208978 (AG, RH, RC, QXL, CM). AG was a recipient of Alzheimer’s Australia Research travel grant. Funding for the UCI-ADRC was provided by NIH/NIA grant P50 AG16573. We would also like to thank Karen Hsiao-Ashe for the Tg2576 mice.

Supplementary material

12640_2009_9112_MOESM1_ESM.pdf (145 kb)
Fig. S1 Schematic of the approach used for the GOStat analysis performed on the Tg2576 and NTg SAGE library data (PDF 145 kb)
12640_2009_9112_MOESM2_ESM.doc (85 kb)
Supplementary Table S1 (DOC 85 kb)
12640_2009_9112_MOESM3_ESM.pdf (4.5 mb)
Table S2 Matched SAGE tags (PDF 4621 kb)
12640_2009_9112_MOESM4_ESM.pdf (293 kb)
Table S3 Unmatched SAGE tags (PDF 293 kb)
12640_2009_9112_MOESM5_ESM.doc (44 kb)
Supplementary Table S4 (DOC 44 kb)


  1. Ambroggio EE, Kim DH, Separovic F, Barrow CJ, Barnham KJ, Bagatolli LA, Fidelio GD (2005) Surface behavior and lipid interaction of Alzheimer beta-amyloid peptide 1–42: a membrane-disrupting peptide. Biophys J 88:2706–2713CrossRefPubMedGoogle Scholar
  2. Arai M, Amano S, Ryo A, Hada A, Wakatsuki T, Shuda M, Kondoh N, Yamamoto M (2003) Identification of epilepsy-related genes by gene expression profiling in the hippocampus of genetically epileptic rat. Brain Res Mol Brain Res 118:147–151CrossRefPubMedGoogle Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29CrossRefPubMedGoogle Scholar
  4. Beguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, Garty H, Geering K (2002) FXYD7 is a brain-specific regulator of Na, K-ATPase alpha 1-beta isozymes. EMBO J 21:3264–3273CrossRefPubMedGoogle Scholar
  5. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20:1464–1465CrossRefPubMedGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  7. Bertram L, Tanzi RE (2001) Dancing in the dark? The status of late-onset Alzheimer’s disease genetics. J Mol Neurosci 17:127–136CrossRefPubMedGoogle Scholar
  8. Bertram L, Tanzi RE (2004) The current status of Alzheimer’s disease genetics: what do we tell the patients? Pharmacol Res 50:385–396CrossRefPubMedGoogle Scholar
  9. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101:2173–2178CrossRefPubMedGoogle Scholar
  10. Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin PJ, Buetow KH, Strausberg RL, De Souza SJ, Riggins GJ (2002) An anatomy of normal and malignant gene expression. Proc Natl Acad Sci USA 99:11287–11292CrossRefPubMedGoogle Scholar
  11. Boon WM, Beissbarth T, Hyde L, Smyth G, Gunnersen J, Denton DA, Scott H, Tan SS (2004) A comparative analysis of transcribed genes in the mouse hypothalamus and neocortex reveals chromosomal clustering. Proc Natl Acad Sci USA 101:14972–14977CrossRefPubMedGoogle Scholar
  12. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMedGoogle Scholar
  13. Chauhan NB, Lee JM, Siegel GJ (1997) Na, K-ATPase mRNA levels and plaque load in Alzheimer’s disease. J Mol Neurosci 9:151–166CrossRefPubMedGoogle Scholar
  14. Cheng MC, Chen CH (2007) Identification of rare mutations of synaptogyrin 1 gene in patients with schizophrenia. J Psychiatr Res 41:1027–1031CrossRefPubMedGoogle Scholar
  15. Chrast R, Scott HS, Papasavvas MP, Rossier C, Antonarakis ES, Barras C, Davisson MT, Schmidt C, Estivill X, Dierssen M, Pritchard M, Antonarakis SE (2000) The mouse brain transcriptome by SAGE: differences in gene expression between P30 brains of the partial trisomy 16 mouse model of Down syndrome (Ts65Dn) and normals. Genome Res 10:2006–2021CrossRefPubMedGoogle Scholar
  16. Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70:462–473CrossRefPubMedGoogle Scholar
  17. Crambert G, Geering K (2003) FXYD proteins: new tissue-specific regulators of the ubiquitous Na, K-ATPase. Sci STKE 2003:RE1CrossRefPubMedGoogle Scholar
  18. Crouch PJ, Blake R, Duce, JA et al (2005) Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci 25:672–679CrossRefPubMedGoogle Scholar
  19. Cruts M, Van Broeckhoven C (1998) Molecular genetics of Alzheimer’s disease. Ann Med 30:560–565CrossRefPubMedGoogle Scholar
  20. Davidsson P, Blennow K (1998) Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int Psychogeriatr 10:11–23CrossRefPubMedGoogle Scholar
  21. de Chaldee M, Brochier C, Van de Vel A, Caudy N, Luthi-Carter R, Gaillard MC, Elalouf JM (2006) Capucin: a novel striatal marker down-regulated in rodent models of Huntington disease. Genomics 87:200–207CrossRefPubMedGoogle Scholar
  22. De Ferrari GV, Chacon MA, Barria MI, Garrido JL, Godoy JA, Olivares G, Reyes AE, Alvarez A, Bronfman M, Inestrosa NC (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry 8:195–208CrossRefPubMedGoogle Scholar
  23. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300CrossRefPubMedGoogle Scholar
  24. Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K, Bell K, Stern Y, Mayeux R (2000) Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157:1399–1405CrossRefPubMedGoogle Scholar
  25. Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS, Morgan D (2003) Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 23:5219–5226PubMedGoogle Scholar
  26. Emilsson L, Saetre P, Jazin E (2006) Alzheimer’s disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signaling. Neurobiol Dis 21:618–625CrossRefPubMedGoogle Scholar
  27. Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M, Adamson J, Ronald J, Blangero J, Hutton M, Younkin SG (2000) Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 290:2303–2304CrossRefPubMedGoogle Scholar
  28. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 262:2551–2556CrossRefPubMedGoogle Scholar
  29. Geering K, Beguin P, Garty H, Karlish S, Fuzesi M, Horisberger JD, Crambert G (2003) FXYD proteins: new tissue- and isoform-specific regulators of Na, K-ATPase. Ann N Y Acad Sci 986:388–394CrossRefPubMedGoogle Scholar
  30. George AJ, Holsinger RM, McLean CA, Laughton KM, Beyreuther K, Evin G, Masters CL, Li QX (2004) APP intracellular domain is increased and soluble Abeta is reduced with diet-induced hypercholesterolemia in a transgenic mouse model of Alzheimer disease. Neurobiol Dis 16:124–132CrossRefPubMedGoogle Scholar
  31. George AJ, Holsinger RM, McLean CA, Tan SS, Scott HS, Cardamone T, Cappai R, Masters CL, Li QX (2006) Decreased phosphatidylethanolamine binding protein expression correlates with Abeta accumulation in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Aging 27:614–623CrossRefPubMedGoogle Scholar
  32. Ginsberg SD, Hemby SE, Lee VM, Eberwine JH, Trojanowski JQ (2000) Expression profile of transcripts in Alzheimer’s disease tangle-bearing CA1 neurons. Ann Neurol 48:77–87CrossRefPubMedGoogle Scholar
  33. Gispert S et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One 4:e5777CrossRefPubMedGoogle Scholar
  34. Hata R, Masumura M, Akatsu H, Li F, Fujita H, Nagai Y, Yamamoto T, Okada H, Kosaka K, Sakanaka M, Sawada T (2001) Up-regulation of calcineurin Abeta mRNA in the Alzheimer’s disease brain: assessment by cDNA microarray. Biochem Biophys Res Commun 284:310–316CrossRefPubMedGoogle Scholar
  35. Hattori N, Kitagawa K, Higashida T, Yagyu K, Shimohama S, Wataya T, Perry G, Smith MA, Inagaki C (1998) CI-ATPase and Na+/K+-ATPase activities in Alzheimer’s disease brains. Neurosci Lett 254:141–144CrossRefPubMedGoogle Scholar
  36. Hauser MA, Li YJ, Takeuchi S, Walters R, Noureddine M, Maready M, Darden T, Hulette C, Martin E, Hauser E, Xu H, Schmechel D, Stenger JE, Dietrich F, Vance J (2003) Genomic convergence: identifying candidate genes for Parkinson’s disease by combining serial analysis of gene expression and genetic linkage. Hum Mol Genet 12:671–677CrossRefPubMedGoogle Scholar
  37. Hendriksen H, Datson NA, Ghijsen WE, van Vliet EA, da Silva FH, Gorter JA, Vreugdenhil E (2001) Altered hippocampal gene expression prior to the onset of spontaneous seizures in the rat post-status epilepticus model. Eur J Neurosci 14:1475–1484CrossRefPubMedGoogle Scholar
  38. Hill DP, Begley DA, Finger JH, Hayamizu TF, McCright IJ, Smith CM, Beal JS, Corbani LE, Blake JA, Eppig JT, Kadin JA, Richardson JE, Ringwald M (2004) The mouse Gene Expression Database (GXD): updates and enhancements. Nucleic Acids Res 32:D568–571CrossRefPubMedGoogle Scholar
  39. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102CrossRefPubMedGoogle Scholar
  40. Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115:3977–3978CrossRefPubMedGoogle Scholar
  41. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997) APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 56:965–973CrossRefPubMedGoogle Scholar
  42. Jee SW, Cho JS, Oh JH, Shim SB, Hwang DY, Lee SH, Song YS, Kim YK (2005) cDNA microarray-based analysis of differentially expressed genes in transgenic brains expressing NSE-controlled APPsw. Int J Mol Med 16:547–552PubMedGoogle Scholar
  43. Jee SW, Cho JS, Kim CK, Hwang DY, Shim SB, Lee SH, Sin JS, Park JH, Kim YS, Choi SY, Kim YK (2006) Oligonucleotide-based analysis of differentially expressed genes in hippocampus of transgenic mice expressing NSE-controlled APPsw. Neurochem Res 31:1035–1044CrossRefPubMedGoogle Scholar
  44. Jee SW, Cho JS, Kim CK, Hwang DY, Shim SB, Lee SH, Sin JS, Kim YS, Park JH, Choi SY, Kim YK (2007) Analysis of differentially expressed genes in early- and late-stage APPsw-transgenic and normal mice using cDNA microarray. Int J Mol Med 19:461–468PubMedGoogle Scholar
  45. Johnston H, Koukoulas I, Jeyaseelan K, Armugam A, Earnest L, Baird R, Dawson N, Ferraro T, Wintour EM (2000) Ontogeny of aquaporins 1 and 3 in ovine placenta and fetal membranes. Placenta 21:88–99CrossRefPubMedGoogle Scholar
  46. Kadowaki K, Sugimoto K, Yamaguchi F, Song T, Watanabe Y, Singh K, Tokuda M (2004) Phosphohippolin expression in the rat central nervous system. Brain Res Mol Brain Res 125:105–112CrossRefPubMedGoogle Scholar
  47. Kagan BL, Azimov R, Azimova R (2004) Amyloid peptide channels. J Membr Biol 202:1–10CrossRefPubMedGoogle Scholar
  48. Kalback W, Watson MD, Kokjohn TA, Kuo YM, Weiss N, Luehrs DC, Lopez J, Brune D, Sisodia SS, Staufenbiel M, Emmerling M, Roher AE (2002) APP transgenic mice Tg2576 accumulate Abeta peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer’s disease senile plaques. Biochemistry 41:922–928CrossRefPubMedGoogle Scholar
  49. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381PubMedGoogle Scholar
  50. Lau TL, Ambroggio EE, Tew DJ, Cappai R, Masters CL, Fidelio GD, Barnham KJ, Separovic F (2006) Amyloid-beta peptide disruption of lipid membranes and the effect of metal ions. J Mol Biol 356:759–770CrossRefPubMedGoogle Scholar
  51. Li Y, Nowotny P, Holmans P et al (2004) Association of late-onset Alzheimer’s disease with genetic variation in multiple members of the GAPD gene family. Proc Natl Acad Sci USA 101:15688–15693CrossRefPubMedGoogle Scholar
  52. Loring JF, Wen X, Lee JM, Seilhamer J, Somogyi R (2001) A gene expression profile of Alzheimer’s disease. DNA Cell Biol 20:683–695CrossRefPubMedGoogle Scholar
  53. Maki M, Matsukawa N, Yuasa H, Otsuka Y, Yamamoto T, Akatsu H, Okamoto T, Ueda R, Ojika K (2002) Decreased expression of hippocampal cholinergic neurostimulating peptide precursor protein mRNA in the hippocampus in Alzheimer disease. J Neuropathol Exp Neurol 61:176–185PubMedGoogle Scholar
  54. Malago W Jr, Sommer CA, Del Cistia Andrade C, Soares-Costa A, Abrao Possik P, Cassago A, Santejo Silveira HC, Henrique-Silva F (2005) Gene expression profile of human Down syndrome leukocytes. Croat Med J 46:647–656PubMedGoogle Scholar
  55. Margulies EH, Kardia SL, Innis JW (2001) A comparative molecular analysis of developing mouse forelimbs and hindlimbs using serial analysis of gene expression (SAGE). Genome Res 11:1686–1698CrossRefPubMedGoogle Scholar
  56. Mark RJ, Hensley K, Butterfield DA, Mattson MP (1995) Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 15:6239–6249PubMedGoogle Scholar
  57. Martinez de Arrieta C, Perez Jurado L, Bernal J, Coloma A (1997) Structure, organization, and chromosomal mapping of the human neurogranin gene (NRGN). Genomics 41:243–249CrossRefPubMedGoogle Scholar
  58. McPhie DL, Coopersmith R, Hines-Peralta A, Chen Y, Ivins KJ, Manly SP, Kozlowski MR, Neve KA, Neve RL (2003) DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J Neurosci 23:6914–6927PubMedGoogle Scholar
  59. McShea A, Harris PL, Webster KR, Wahl AF, Smith MA (1997) Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am J Pathol 150:1933–1939PubMedGoogle Scholar
  60. Myers A et al (2000) Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 290:2304–2305CrossRefPubMedGoogle Scholar
  61. Myers A et al (2002) Full genome screen for Alzheimer disease: stage II analysis. Am J Med Genet 114:235–244CrossRefPubMedGoogle Scholar
  62. National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease (2007) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol Aging 18:S1–2Google Scholar
  63. Noureddine MA, Li YJ, van der Walt JM, Walters R, Jewett RM, Xu H, Wang T, Walter JW, Scott BL, Hulette C, Schmechel D, Stenger JE, Dietrich F, Vance JM, Hauser MA (2005) Genomic convergence to identify candidate genes for Parkinson disease: SAGE analysis of the substantia nigra. Mov Disord 20:1299–1309CrossRefPubMedGoogle Scholar
  64. Ozbas-Gerceker F, Redeker S, Boer K, Ozguc M, Saygi S, Dalkara T, Soylemezoglu F, Akalan N, Baayen JC, Gorter JA, Aronica E (2006) Serial analysis of gene expression in the hippocampus of patients with mesial temporal lobe epilepsy. Neuroscience 138:457–474CrossRefPubMedGoogle Scholar
  65. Pericak-Vance MA, Bebout JL, Gaskell PC Jr, Yamaoka LH, Hung WY, Alberts MJ, Walker AP, Bartlett RJ, Haynes CA, Welsh KA et al (1991) Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet 48:1034–1050PubMedGoogle Scholar
  66. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefPubMedGoogle Scholar
  67. Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet 13:1225–1240CrossRefPubMedGoogle Scholar
  68. Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W Jr, Kaye J, Manczak M (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimers Dis 7:103–117 (discussion 173–180)PubMedGoogle Scholar
  69. Ricciarelli R, d’Abramo C, Massone S, Marinari U, Pronzato M, Tabaton M (2004) Microarray analysis in Alzheimer’s disease and normal aging. IUBMB Life 56:349–354CrossRefPubMedGoogle Scholar
  70. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  71. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22:10690–10698PubMedGoogle Scholar
  72. Ryu EJ, Angelastro JM, Greene LA (2005) Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 18:54–74CrossRefPubMedGoogle Scholar
  73. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81CrossRefPubMedGoogle Scholar
  74. Shimada T, Moriuchi R, Mori T, Yamada K, Ishimaru T, Katamine S (2006) Identification of NADH dehydrogenase 1 alpha subcomplex 5 capable to transform murine fibroblasts and overexpressed in human cervical carcinoma cell lines. Biochem Biophys Res Commun 339:852–857CrossRefPubMedGoogle Scholar
  75. Siu IM, Bai R, Gallia GL, Edwards JB, Tyler BM, Eberhart CG, Riggins GJ (2008) Coexpression of neuronatin splice forms promotes medulloblastoma growth. Neuro Oncol 10:716–724CrossRefPubMedGoogle Scholar
  76. Stein TD, Johnson JA (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 22:7380–7388PubMedGoogle Scholar
  77. Sunaga K, Takahashi H, Chuang DM, Ishitani R (1995) Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer's brain. Neurosci Lett 200:133–136CrossRefPubMedGoogle Scholar
  78. Sweadner KJ, Rael E (2000) The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56CrossRefPubMedGoogle Scholar
  79. Tanzi RE, Bertram L (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32:181–184CrossRefPubMedGoogle Scholar
  80. Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB, Stupak DP, Sugrue MM, Tatton NA (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J Neural Transm Suppl 60:77–100Google Scholar
  81. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158–1160CrossRefPubMedGoogle Scholar
  82. Varvel NH, Bhaskar K, Patil AR, Pimplikar SW, Herrup K, Lamb BT (2008) Abeta oligomers induce neuronal cell cycle events in Alzheimer’s disease. J Neurosci 28:10786–10793CrossRefPubMedGoogle Scholar
  83. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487CrossRefPubMedGoogle Scholar
  84. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193CrossRefPubMedGoogle Scholar
  85. Wang G, Zhang Y, Chen B, Cheng J (2003) Preliminary studies on Alzheimer’s disease using cDNA microarrays. Mech Ageing Dev 124:115–124CrossRefPubMedGoogle Scholar
  86. Williams C, Mehrian Shai R, Wu Y, Hsu YH, Sitzer T, Spann B, McCleary C, Mo Y, Miller CA (2009) Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer’s disease. PLoS One 4:e4936CrossRefPubMedGoogle Scholar
  87. Xu PT, Li YJ, Qin XJ, Scherzer CR, Xu H, Schmechel DE, Hulette CM, Ervin J, Gullans SR, Haines J, Pericak-Vance MA, Gilbert JR (2006) Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Neurobiol Dis 21:256–275CrossRefPubMedGoogle Scholar
  88. Xu PT, Li YJ, Qin XJ, Kroner C, Green-Odlum A, Xu H, Wang TY, Schmechel DE, Hulette CM, Ervin J, Hauser M, Haines J, Pericak-Vance MA, Gilbert JR (2007) A SAGE study of apolipoprotein E3/3, E3/4 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Mol Cell Neurosci 36:313–331CrossRefPubMedGoogle Scholar
  89. Yao PJ, Zhu M, Pyun EI, Brooks AI, Therianos S, Meyers VE, Coleman PD (2003) Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s disease. Neurobiol Dis 12:97–109CrossRefPubMedGoogle Scholar
  90. Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401:173–177CrossRefPubMedGoogle Scholar
  91. Yeung KC, Rose DW, Dhillon AS, Yaros D, Gustafsson M, Chatterjee D, McFerran B, Wyche J, Kolch W, Sedivy JM (2001) Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol 21:7207–7217CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amee J. George
    • 1
    • 5
  • Lavinia Gordon
    • 2
  • Tim Beissbarth
    • 2
  • Irene Koukoulas
    • 3
  • R. M. Damian Holsinger
    • 1
  • Victoria Perreau
    • 1
    • 4
  • Roberto Cappai
    • 1
    • 4
  • Seong-Seng Tan
    • 3
  • Colin L. Masters
    • 1
    • 4
  • Hamish S. Scott
    • 2
  • Qiao-Xin Li
    • 1
    • 4
    Email author
  1. 1.Department of PathologyThe University of Melbourne and The Mental Health Research Institute of VictoriaParkvilleAustralia
  2. 2.The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  3. 3.Howard Florey InstituteThe University of MelbourneParkvilleAustralia
  4. 4.Centre for NeuroscienceThe University of MelbourneParkvilleAustralia
  5. 5.Growth Control Laboratory, Research DivisionPeter MacCallum Cancer CentreEast MelbourneAustralia

Personalised recommendations