Skip to main content

Advertisement

Log in

Diazoxide Reduces Status Epilepticus Neuron Damage in Diabetes

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Diabetic hyperglycemia is associated with seizure severity and may aggravate brain damage after status epilepticus. Our earlier studies suggest the involvement of ATP-sensitive potassium channels (KATP) in glucose-related neuroexcitability. We aimed to determine whether KATP agonist protects against status epilepticus-induced brain damage. Adult male Sprague–Dawley rats were divided into two groups: the streptozotocin (STZ)-induced diabetes (STZ) group and the normal saline (NS) group. Both groups were treated with either diazoxide (15 mg/kg, i.v.) (STZ + DZX, NS + DZX) or vehicle (STZ + V, NS + V) before lithium-pilocarpine-induced status epilepticus. We evaluated seizure susceptibility, severity, and mortality. The rats underwent Morris water-maze tests and hippocampal histopathology analyses 24 h post-status epilepticus. A multi-electrode recording system was used to study field excitatory postsynaptic synaptic potentials (fEPSP). RNA interference (RNAi) to knockdown Kir 6.2 in a hippocampal cell line was used to evaluate the effect of diazoxide in the presence of high concentration of ATP. Seizures were less severe (P < 0.01), post-status epilepticus learning and memory were better (P < 0.05), and neuron loss in the hippocampal CA3 area was lower (P < 0.05) in the STZ + DZX than the STZ + V group. In contrast, seizure severity, post-status epilepticus learning and memory, and hippocampal CA3 neuron loss were comparable in the NS + DZX and NS + V groups. fEPSP was lower in the STZ + DZX but not in the NS + DZX group. The RNAi study confirmed that diazoxide, with its KATP-opening effects, could counteract the KATP-closing effect by high dose ATP. We conclude that, by opening KATP, diazoxide protects against status epilepticus-induced neuron damage during diabetic hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashcroft FM, Gribble FM (1998) Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci 21:288–294

    Article  CAS  PubMed  Google Scholar 

  • Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci 23:7737–7741

    CAS  PubMed  Google Scholar 

  • Bancila V, Nikonenko I, Dunant Y, Bloc A (2004) Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J Neurochem 90:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Bancila V, Cens T, Monnier D, Chanson F, Faure C, Dunant Y, Bloc A (2005) Two SUR1-specific histidine residues mandatory for zinc-induced activation of the rat KATP channel. J Biol Chem 280:8793–8799

    Article  CAS  PubMed  Google Scholar 

  • Betourne A, Bertholet AM, Labroue E, Halley H, Sun HS, Lorsignol A, Feng ZP, French RJ, Penicaud L, Lassalle JM, Frances B (2009) Involvement of hippocampal CA3 K(ATP) channels in contextual memory. Neuropharmacology 56:615–625

    Article  CAS  PubMed  Google Scholar 

  • Björklund A, Bondo Hansen J, Falkmer S, Grill V (2004) Openers of ATP-dependent K+-channels protect against a signal-transduction-linked and not freely reversible defect of insulin secretion in a rat islet transplantation model of Type 2 diabetes. Diabetologia 47:885–891

    Article  PubMed  Google Scholar 

  • Chabot C, Massicotte G, Milot M, Trudeau F, Gagné J (1997) Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats. Brain Res 768:249–256

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC (2003) Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol 54:706–718

    Article  CAS  PubMed  Google Scholar 

  • Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157

    Article  CAS  PubMed  Google Scholar 

  • Dabrowski M, Larsen T, Ashcroft FM, Bondo Hansen J, Wahl P (2003) Potent and selective activation of the pancreatic beta-cell type K(ATP) channel by two novel diazoxide analogues. Diabetologia 46:1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Dunn-Meynell AA, Rawson NE, Levin BE (1998) Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res 814:41–54

    Article  CAS  PubMed  Google Scholar 

  • Folbergrova J, Ingvar M, Siesjo BK (1981) Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J Neurochem 37:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Ford ES (2005) Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 28:2745–2749

    Article  PubMed  Google Scholar 

  • Henningsen L, Johansen K (1978) Growth hormone secretion and diazoxide induced hyperglycaemia. Horm Metab Res 10:565–566

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Sánchez C, Basile AS, Fedorova I, Arima H, Stannard B, Fernandez AM, Ito Y, LeRoith D (2001) Mice transgenically overexpressing sulfonylurea receptor 1 in forebrain resist seizure induction and excitotoxic neuron death. Proc Natl Acad Sci USA 98:3549–3554

    Article  PubMed  Google Scholar 

  • Huang CW, Huang CC, Wu SN (2006) The opening of pregabalin on ATP-sensitive potassium channels in differentiated hippocampal neuron-derived H19-7 cells. Epilepsia 47:720–726

    Article  CAS  PubMed  Google Scholar 

  • Huang CW, Huang CC, Cheng JT, Tsai JJ, Wu SN (2007) Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels. J Neurosci Res 85:1468–1477

    Article  CAS  PubMed  Google Scholar 

  • Huang CW, Tsai JJ, Ou HY, Wang ST, Cheng JT, Wu SN, Huang CC (2008) Diabetic hyperglycemia is associated with the severity of epileptic seizures in adults. Epilepsy Res 79:71–77

    Article  CAS  PubMed  Google Scholar 

  • Huang CW, Cheng JT, Tsai JJ, Wu SN, Huang CC (2009) Diabetes aggravates epileptic seizures and status epilepticus-induced hippocampal damage. Neurotox Res 15:71–81

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004) cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611–623

    Article  CAS  PubMed  Google Scholar 

  • Levin BE, Dunn-Meynell AA (1998) Effect of streptozotocin-induced diabetes on rat brain sulfonylurea binding sites. Brain Res Bull 46:513–518

    Article  CAS  PubMed  Google Scholar 

  • Maedler K, Størling J, Sturis J, Zuellig RA, Spinas GA, Arkhammar PO, Mandrup-Poulsen T, Donath MY (2004) Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes 53:1706–1713

    Article  CAS  PubMed  Google Scholar 

  • Mattia D, Nagao T, Rogawski MA, Avoli M (1994) Potassium channel activators counteract anoxic hyperexcitability but not 4-aminopyridine-induced epileptiform activity in the rat hippocampal slice. Neuropharmacology 33:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S (2001) ATP-sensitive Kt channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512

    CAS  PubMed  Google Scholar 

  • Moreau C, Prost AL, Derand R, Vivaudou M (2005) SUR, ABC proteins targeted by KATP channel openers. J Mol Cell Cardiol 38:951–963

    Article  CAS  PubMed  Google Scholar 

  • Morrione A, Romano G, Navarro M, Reiss K, Valentinis B, Dews M, Eves E, Rosner MR, Baserga R (2000) Insulin-like growth factor I receptor signaling in differentiation of neuronal H19-7 cells. Cancer Res 60:2263–2272

    CAS  PubMed  Google Scholar 

  • Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476

    Article  CAS  PubMed  Google Scholar 

  • Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ, Coulter DA (2007) Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci 27:14012–14022

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen A, Schwartzkroin PA, Moshe SL (2006) Models of seizures and epilepsy. Elsevier Academic Press, Burlington

    Google Scholar 

  • Quinta-Ferreira ME, Matias CM (2005) Tetanically released zinc inhibits hippocampal mossy fiber calcium, zinc and synaptic responses. Brain Res 1047:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rowe IC, Treherne JM, Ashford ML (1996) Activation by intracellular ATP of a potassium channel in neurones from rat basomedial hypothalamus. J Physiol 490:97–113

    CAS  PubMed  Google Scholar 

  • Schwartz TH (2007) Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr 7:91–94

    Article  PubMed  Google Scholar 

  • Schwechter EM, Veliskova J, Velisek L (2003) Correlation between extracellular glucose and seizure susceptibility in adult rats. Ann Neurol 53:91–101

    Article  CAS  PubMed  Google Scholar 

  • Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664

    Article  CAS  PubMed  Google Scholar 

  • Soundarapandian MM, Wu D, Zhong X, Petralia RS, Peng L, Tu W, Lu Y (2007) Expression of functional Kir6.1 channels regulates glutamate release at CA3 synapses in generation of epileptic form of seizures. J Neurochem 103:1982–1988

    Article  CAS  PubMed  Google Scholar 

  • Sun HS, Feng ZP, Miki T, Seino S, French RJ (2006) Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive Kt channels. J Neurophysiol 95:2590–2601

    Article  CAS  PubMed  Google Scholar 

  • Thomzig A, Laube G, Pruss H, Veh RW (2005) Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 484:313–330

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto M, Yasui T, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J Physiol 546:665–675

    Article  CAS  PubMed  Google Scholar 

  • Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K (2007) The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 20:194–202

    Article  PubMed  Google Scholar 

  • Wickenden AD (2002) Potassium channels as anti-epileptic drug targets. Neuropharmacology 43:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Wulfsen I, Hauber HP, Schiemann D, Bauer CK, Schwarz JR (2000) Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary. J Neuroendocrinol 12:263–272

    Article  CAS  PubMed  Google Scholar 

  • Yamada KA, Rothman SM (1992) Diazoxide blocks glutamate desensitization and prolongs excitatory postsynaptic currents in rat hippocampal neurons. J Physiol 458:385–407

    Google Scholar 

  • Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, Shimizu T, Seino S, Inagaki N (2001) Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Zarrindast MR, Ebrahimi M, Khalilzadeh A (2006) Influence of ATP-sensitive potassium channels on lithium state-dependent memory of passive avoidance in mice. Eur J Pharmacol 550:107–111

    Article  CAS  PubMed  Google Scholar 

  • Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B (1999) Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol 514:327–341

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Verkman AS (2008) Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells. Mol Cell Neurosci 37:1–10

    Article  PubMed  Google Scholar 

  • Zhao M, Yang H, Jiang X, Zhou W, Zhu B, Zeng Y, Yao K, Ren C (2008) Lipofectamine RNAiMAX: an efficient siRNA transfection reagent in human embryonic stem cells. Mol Biotechnol 40:19–26

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants NSC-96-2314-B-006-059 from the National Science Council and NCKUH-9701015 from National Cheng Kung University Hospital, Taiwan. We thank Dr. Ming-Wei Lin for technical assistance and Bill Franke for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ching Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CW., Wu, SN., Cheng, JT. et al. Diazoxide Reduces Status Epilepticus Neuron Damage in Diabetes. Neurotox Res 17, 305–316 (2010). https://doi.org/10.1007/s12640-009-9104-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9104-3

Keywords

Navigation