Skip to main content

Advertisement

Log in

Activation of Group III Metabotropic Glutamate Receptor Reduces Intracellular Calcium in β-Amyloid Peptide [31–35]-Treated Cortical Neurons

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

It is unknown whether amyloid beta-protein 31–35 (Aβ[31–35]) has effects similar to Aβ[1–40] and Aβ[25–35] on the intracellular calcium ([Ca2+]i) to induce a disruption of calcium homeostasis. In this study, we investigated the effects of Aβ[31–35] on [Ca2+]i in primary cultured cortical neurons using real time fluorescence imaging technique and the Ca2+-sensitive dye Furo-2/AM. It was found that Aβ[31–35] (25 μM) could induce a significant elevation in [Ca2+]i and a decrease in the average latency in the cortical neurons in a dose-dependent manner. To examine whether the activation of group III mGluRs could block the changes in [Ca2+]i and protect neurons from apoptosis induced by Aβ[31–35], we then investigated the effects of l-serine-O-phosphate (l-SOP) and (R,S)-4-phosphonophenylglycine ((R,S)-PPG), the selective agonists of group III metabotropic glutamate receptors (mGluRs), on [Ca2+]i and apoptosis in neurons treated by Aβ[31–35]. We demonstrated that l-SOP or (R,S)-PPG (100 μM) treatment suppresses significantly the elevation of [Ca2+]i induced by Aβ[31–35] and also induces an almost complete recovery of both the fluorescence intensity and apoptotic cells (%) to the control level in the neurons. These results suggest that Aβ[31–35] may be the shortest sequence responsible for the neuronal toxicity of Aβ protein and that the neuroprotective role of the activation of group III mGluRs from the apoptosis induced by Aβ[31–35] might be partly due to its ability to inhibit the increased calcium influx, which results from Aβ[31–35].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

[Ca2+]i:

Intracellular calcium concentration

DMEM:

Dubecco’s modified Eagle medium

FBS:

Fetal bovine serum

fura-2AM:

Fura-2-pentacetoxymethylester

MAP2:

Microtubule-associated protein 2

l-SOP:

l-Serine-O-phosphate

l-AP4:

l-2-Amino-4-phosphonobutanoate

mGluR:

Metabotropic glutamate receptor

NMDA:

N-Methyl-d-aspartate

TEM:

Transmission electron microscopy

Aβ[31–35]:

Amyloid beta-protein 31–35

(R,S)-PPG:

(R,S)-4-phosphonophenylglycine

References

  • Arispe N, Rojas E, Pollard HB (1993a) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci USA 90(2):567–571

    Article  PubMed  CAS  Google Scholar 

  • Arispe N, Rojas E, Pollard HB (1993b) Giant multilevel cation channels formed by Alzheimer disease amyloid β protein [AβP-(1-40)] in bilayer membranes. Proc Natl Acad Sci USA 90:10573–10577

    Article  PubMed  CAS  Google Scholar 

  • Barger SW, Smith-Swintosky VL, Rydel RE, Mattson MP (1993) beta-Amyloid precursor protein mismetabolism and loss of calcium homeostasis in Alzheimer’s disease. Ann N Y Acad Sci 95:158–164

    Article  Google Scholar 

  • Brorson JR, Bindokas VP, Iwama T, Marcuccilli CJ, Chisholm JC, Miller RJ (1995) The Ca2+ influx induced by beta-amyloid peptide 25-35 in cultured hippocampal neurons results from network excitation. J Neurobiol 26(3):325–338

    Article  PubMed  CAS  Google Scholar 

  • Bruno V, Battaglia G, Ksiazek I, van der Putten H, Catania MV, Giuffrida R, Lukic S, Leonhardt T, Inderbitzin W, Gasparini F, Kuhn R, Hampson DR, Nicoletti F, Flor PJ (2000) Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J Neurosci 20(17):6413–6420

    PubMed  CAS  Google Scholar 

  • Clementi ME, Marini S, Coletta M, Orsini F, Giardina B, Misiti F (2005) Abeta(31-35) and Abeta(25-35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: role of the redox state of methionine-35. FEBS Lett 579(13):2913–2918

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  PubMed  CAS  Google Scholar 

  • Copani A, Bruno VM, Barresi V, Battaglia G, Condorelli DF, Nicoletti F (1995) Activation of metabotropic glutamate receptors prevents neuronal apoptosis in culture. J Neurochem 64(1):101–108

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Faget KY, Huang X, Tanzi RE, Bush AI (2000) Metal chelation as a potential therapy for Alzheimer’s disease. Ann N Y Acad Sci 920:292–304

    PubMed  CAS  Google Scholar 

  • Dante S, Hauss T, Dencher NA (2002) Beta-amyloid 25 to 35 is intercalated in anionic and zwitterionic lipid membranes to different extents. Biophys J 83(5):2610–2616

    Article  PubMed  CAS  Google Scholar 

  • Flor PJ, Van Der Putten H, Rüegg D, Lukic S, Leonhardt T, Bence M, Sansig G, Knopfel T, Kuhn R (1997) A novel splice variant of a metabotropic glutamate receptor, human mGluR7b. Neuropharmacology 36:153–159

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Abe Y, Akaike N (1994) Amyloid β protein-induced irreversible current in rat cortical neurones. Neuroreport 27:2016–2018

    Article  Google Scholar 

  • Gasparini F, Bruno V, Battaglia G, Lukic S, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ (1999) (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther 289:1678–1687

    PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75(6):1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    Article  PubMed  CAS  Google Scholar 

  • Heredia L, Helguera P, de Olmos S, Kedikian G, Sola Vigo F, LaFerla F, Staufenbiel M, de Olmos J, Busciglio J, Caceres A, Lorenzo A (2006) Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci 26(24):6533–6642

    Article  PubMed  CAS  Google Scholar 

  • Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T (2003) Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 23(26):8967–8977

    PubMed  CAS  Google Scholar 

  • Ho KP, Li L, Zhao L, Qian ZM (2003) Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol Cell Biochem 247(1–2):219–222

    Article  PubMed  CAS  Google Scholar 

  • Johansen PA, Chase LA, Sinor AD, Koerner JF, Johnson RL, Robinson MB (1995) Type 4a metabotropic glutamate receptor: identification of new potent agonists and differentiation from the L-(+)-2-amino-4-phosphonobutanoic acid-sensitive receptor in the lateral perforant pathway in rats. Mol Pharmacol 48:140–149

    PubMed  CAS  Google Scholar 

  • Kawahara M, Kuroda Y (2000) Molecular mechanism of neurodegeneration induced by Alzheimer’s beta-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res Bull 53(4):389–397

    Article  PubMed  CAS  Google Scholar 

  • Kawahara M, Kuroda Y (2001) Intracellular calcium changes in neuronal cells induced by Alzheimer’s beta-amyloid protein are blocked by estradiol and cholesterol. Cell Mol Neurobiol 21(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Luyt K, Varadi A, Molnar E (2003) Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells. J Neurochem 84(6):1452–1464

    Article  PubMed  CAS  Google Scholar 

  • Luyt K, Varadi A, Durant CF, Molnar E (2006) Oligodendroglial metabotropic glutamate receptors are developmentally regulated and involved in the prevention of apoptosis. J Neurochem 99(2):641–656

    Article  PubMed  CAS  Google Scholar 

  • Lynch T, Cherny RA, Bush AI (2000) Oxidative processes in Alzheimer’s disease: the role of abeta-metal interactions. Exp Gerontol 35(4):445–451

    Article  PubMed  CAS  Google Scholar 

  • Misiti F, Sampaolese B, Pezzotti M, Marini S, Coletta M, Ceccarelli L, Giardina B, Clementi ME (2005) Abeta(31–35) peptide induce apoptosis in PC 12 cells: contrast with Abeta(25-35) peptide and examination of underlying mechanisms. Neurochem Int 46(7):575–583

    Article  PubMed  CAS  Google Scholar 

  • Mogensen HS, Beatty DM, Morris SJ, Jorgensen OS (1998) Amyloid beta-peptide(25-35) changes [Ca2+] in hippocampal neurons. Neuroreport 9(7):1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21(19):7551–7760

    PubMed  CAS  Google Scholar 

  • Pollard HB, Rojas E, Arispe N (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci USA 90(22):10573–10577

    Article  PubMed  Google Scholar 

  • Pollard HB, Arispe N, Rojas E (1995) Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol Neurobiol 15(5):513–526

    Article  PubMed  CAS  Google Scholar 

  • Qi JS, Qiao JT (2001a) Suppression of large conductance Ca2+-activated K+ channels by amyloid beta-protein fragment 31–35 in membrane patches excised from hippocampal neurons. Sheng Li Xue Bao 53(3):198–204

    PubMed  CAS  Google Scholar 

  • Qi JS, Qiao JT (2001b) Amyloid beta-protein fragment 31–35 forms ion channels in membrane patches excised from rat hippocampal neurons. Neuroscience 105:845–852

    Article  PubMed  CAS  Google Scholar 

  • Qi JS, Ye L, Qiao JT (2004) Amyloid beta-protein fragment 31–35 suppresses delayed rectifying potassium channels in membrane patches excised from hippocampal neurons in rats. Synapse 51(3):165–172

    Article  PubMed  CAS  Google Scholar 

  • Rhee SK, Quist AP, Lal R (1998) Amyloid beta protein-(1-42) forms calcium-permeable, Zn2+-sensitive channel. J Biol Chem 273(22):13379–13382

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer disease. Neuron 6:487–498

    Article  PubMed  CAS  Google Scholar 

  • Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17(19):7503–7522

    PubMed  CAS  Google Scholar 

  • Simmons MA, Schneider CR (1993) Amyloidβpeptide act directly on single neurons. Neurosci Lett 150:133–136

    Article  PubMed  CAS  Google Scholar 

  • Trombley PQ, Westbrook GL (1992) L-AP4 inhibits calcium currents and synaptic transmission via a G-protein-coupled glutamate receptor. J Neurosci 12(6):2043–2050

    PubMed  CAS  Google Scholar 

  • Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, Tang CY, Aguinaldo G, Pappolla M, Duff K, Wisniewski T, Turnbull DH (2003) Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50(2):293–302

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Kitagawa K, Liu B, Zhang NY, Xiong ZM, Inagaki C (2006) Attenuation of amyloid beta (Abeta)-induced inhibition of phosphatidylinositol 4-kinase activity by Abeta fragments, Abeta20–29 and Abeta31–35. Neurosci Lett 396(2):148–152

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Qiao JT, Dou Y, Qiao ZD (1999) Beta-amyloid peptide fragment 31–35 induces apoptosis in cultured cortical neurons. Neuroscience 92(1):177–184

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Xiao R, Dou Y, Wang S, Qiao Z, Qiao J (2000) Carbachol blocks beta-amyloid fragment 31–35-induced apoptosis in cultured cortical neurons. Brain Res Bull 51(6):465–470

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250(4978):279–282

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Qian ZM, Zhang C, Wing HY, Du F, Ya K (2008) Amyloid beta-peptide 31–35-induced neuronal apoptosis is mediated by caspase-dependent pathways via cAMP-dependent protein kinase A activation. Aging Cell 7(1):47–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The studies in our laboratories were supported by Research Grants from Shanxi Medical University, The Competitive Earmarked Grants of The Hong Kong Research Grants Council (CUHK466907-KY), Direct Grant of The Chinese University of Hong Kong (A/C: 4450226-KY and 4450273-KY), RGC-NSFC Grant (KY), Grants from Hong Kong Polytechnic University (I-BB8L, GU-384 and G-YG11) and National Key Laboratory of CMMP (Shenzhen), and Shenzhen-Hong Kong Innovation Circle Program. We declare that we have no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Ming Qian, Ce Zhang or Ya Ke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Zhao, S.T., Qian, Z.M. et al. Activation of Group III Metabotropic Glutamate Receptor Reduces Intracellular Calcium in β-Amyloid Peptide [31–35]-Treated Cortical Neurons. Neurotox Res 16, 174–183 (2009). https://doi.org/10.1007/s12640-009-9068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9068-3

Keywords

Navigation