Neurotoxicity Research

, Volume 16, Issue 3, pp 271–279 | Cite as

Molecular and Neurochemical Mechanisms in PD Pathogenesis

  • Irmgard Paris
  • Jorge Lozano
  • Carolina Perez-Pastene
  • Patricia Muñoz
  • Juan Segura-Aguilar


Oxidation of dopamine to aminochrome seems to be a normal process leading to aminochrome polymerization to form neuromelanin, since normal individuals have this pigment in their dopaminergic neurons in the substantia nigra. The neurons lost in individuals with Parkinson’s disease are dopaminergic neurons containing neuromelanin. This raises two questions. First, why are those cells containing neuromelanin lost in this disease? Second, what is the identity of the neurotoxin that induces this cell death? We propose that aminochrome is the agent responsible for the death of dopaminergic neurons containing neuromelanin in individuals with Parkinson’s disease. The normal oxidative pathway of dopamine, in which aminochrome polymerizes to form neuromelanin, can be neurotoxic if DT-diaphorase is inhibited under certain conditions. Inhibition of DT-diaphorase allows two neurotoxic reactions to proceed: (i) the formation of aminochrome adducts with alpha-synuclein, which induce and stabilize the formation of neurotoxic protofibrils; and (ii) the one electron reduction of aminochrome to the neurotoxic leukoaminochrome o-semiquinone radical. Therefore, we propose that DT-diaphorase is an important neuroprotective enzyme in dopaminergic neurons containing neuromelanin.


Parkinson’s disease Aminochrome Neuroprotection MPTP 6-Hydroxydopamine Rotenone Alpha-synuclein VMAT-2 Reserpine Copper Iron Dopamine 


  1. Aguilar Hernandez R, Sanchez De Las Matas MJ, Arriagada C, Barcia C, Caviedes P, Herrero MT, Segura-Aguilar J (2003) MPP(+)-induced degeneration is potentiated by dicoumarol in cultures of the RCSN-3 dopaminergic cell line. Implications of neuromelanin in oxidative metabolism of dopamine neurotoxicity. Neurotoxicity Res 5:407–410CrossRefGoogle Scholar
  2. Alerte TN, Akinfolarin AA, Friedrich EE, Mader SA, Hong CS, Perez RG (2008) Alpha-synuclein aggregation alters tyrosine hydroxylase phosphorylation and immunoreactivity: lessons from viral transduction of knockout mice. Neurosci Lett 435:24–29PubMedCrossRefGoogle Scholar
  3. Alvarez-Fischer D, Henze C, Strenzke C, Westrich J, Ferger B, Höglinger GU, Oertel WH, Hartmann A (2008) Characterization of the striatal 6-OHDA model of Parkinson’s disease in wild type and alpha-synuclein-deleted mice. Exp Neurol 210:182–193PubMedCrossRefGoogle Scholar
  4. Arriagada A, Paris I, Sanchez de las Matas MJ, Martinez-Alvarado P, Cardenas S, Castañeda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity of leuko aminochrome o-semiquinone radical derived of dopamine oxidation: mitochondria damage, necrosis and hydroxyl radical formation. Neurobiol Dis 16:468–477PubMedCrossRefGoogle Scholar
  5. Baez S, Linderson Y, Segura-Aguilar J (1995) Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochem Mol Med 54:12–18PubMedCrossRefGoogle Scholar
  6. Ben Gedalya T, Loeb V, Israeli E, Altschuler Y, Selkoe DJ, Sharon R (2009) Alpha-synuclein and polyunsaturated fatty acids promote clathrin-mediated endocytosis and synaptic vesicle recycling. Traffic 10:218–234PubMedCrossRefGoogle Scholar
  7. Berg D, Niwar M, Maass S, Zimprich A, Moller JC, Wuellner U, Schmitz-Hubsch T, Klein C, Tan EK, Schols L, Marsh L, Dawson TM, Janetzky B, Müller T, Woitalla D, Kostic V, Pramstaller PP, Oertel WH, Bauer P, Krueger R, Gasser T, Riess O (2005) Alpha-synuclein and Parkinson’s disease: implications from the screening of more than 1,900 patients. Mov Disord 20:1191–1194PubMedCrossRefGoogle Scholar
  8. Buchman VL, Ninkina N (2008a) Modulation of alpha-synuclein expression in transgenic animals for modelling synucleinopathies—is the juice worth the squeeze? Neurotox Res 14:329–341PubMedCrossRefGoogle Scholar
  9. Buchman VL, Ninkina N (2008b) Mouse models for studying function of synuclein family members in the normal and degenerating brain. Neurotox Res 13:121Google Scholar
  10. Cardenas S, Paris I, Fuentes-Bravo P, Graumann R, Riveros A, lozano J, Calegaro M, Caviedes P, Segura-Aguilar J (2008a) DT-diaphorase protection in catecholaminergic cell line against aminochrome neurotoxic effects. Neurotox Res 13:120Google Scholar
  11. Cardenas SP, Perez-Pastene C, Couve E, Segura-Aguilar J (2008b) The DT-diaphorase prevents the aggregation of a-synuclein induced by aminochrome. Neurotoxicity Res 13:136Google Scholar
  12. Chen Q, Thorpe J, Keller JN (2005) Alpha-synuclein alters proteasome function, protein synthesis, and stationary phase viability. J Biol Chem 280:30009–30017PubMedCrossRefGoogle Scholar
  13. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576PubMedCrossRefGoogle Scholar
  14. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349PubMedCrossRefGoogle Scholar
  15. Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28:4250–4260PubMedCrossRefGoogle Scholar
  16. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295PubMedCrossRefGoogle Scholar
  17. Díaz-Véliz G, Mora S, Dossi MT, Gómez P, Arriagada C, Montiel J, Aboitiz F, Segura-Aguilar J (2002) Behavioral effects of aminochrome and dopachrome injected in the rat substantia nigra. Pharmacol Biochem Behav 73:843–850PubMedCrossRefGoogle Scholar
  18. Diaz-Veliz G, Mora S, Lungenstrass H, Segura-Aguilar J (2004a) Inhibition of DT-diaphorase potentiates the in vivo neurotoxic effect of intranigral injection of salsolinol in rats. Neurotox Res 5:629–633PubMedCrossRefGoogle Scholar
  19. Diaz-Veliz G, Mora S, Gomez P, Dossi MT, Montiel J, Arriagada C, Aboitiz F, Segura-Aguilar J (2004b) Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor. Pharmacol Biochem Behav 77:245–251PubMedCrossRefGoogle Scholar
  20. Diaz-Veliz G, Paris I, Mora S, Raisman-Vozari R, Segura-Aguilar J (2008) Copper neurotoxicity in rat substantia nigra and striatum is dependent on DT-diaphorase inhibition. Chem Res Toxicol 21:1180–1185PubMedCrossRefGoogle Scholar
  21. Duka T, Sidhu A (2006) The neurotoxin, MPP+, induces hyperphosphorylation of Tau, in the presence of alpha-synuclein, in SH-SY5Y neuroblastoma cells. Neurotox Res 10:1–10PubMedCrossRefGoogle Scholar
  22. Duka T, Rusnak M, Drolet RE, Duka V, Wersinger C, Goudreau JL, Sidhu A (2006) Alpha-synuclein induces hyperphosphorylation of Tau in the MPTP model of Parkinsonism. FASEB J 20:2302–2312PubMedCrossRefGoogle Scholar
  23. Fernández CO (2008) Synucleinnopathies: structural features and molecular interactions. Neurotox Res 13:120Google Scholar
  24. Follmer C, Romão L, Einsiedler CM, Porto TC, Lara FA, Moncores M, Weissmüller G, Lashuel HA, Lansbury P, Neto VM, Silva JL, Foguel D (2007) Dopamine affects the stability, hydration, and packing of protofibrils and fibrils of the wild type and variants of alpha-synuclein. Biochemistry 46:472–482PubMedCrossRefGoogle Scholar
  25. Foppoli C, Coccia R, Cini C, Rosei MA (1997) Catecholamines oxidation by xanthine oxidase. Biochim Biophys Acta 1334:200–206PubMedGoogle Scholar
  26. Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-Diaphorase induce cell death in a substantia nigra-derived cell line-an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20:776–783PubMedCrossRefGoogle Scholar
  27. Galzigna L, De Iuliis A, Zanatta L (2000) Enzymatic dopamine peroxidation in substantia nigra of human brain. Clin Chim Acta 300:131–138PubMedCrossRefGoogle Scholar
  28. Gauthier MA, Eibl JK, Crispo JA, Ross GM (2008) Covalent arylation of metallothionein by oxidized dopamine products: a possible mechanism for zinc-mediated enhancement of dopaminergic neuron survival. Neurotox Res 14:317–328PubMedCrossRefGoogle Scholar
  29. Glaser CB, Yamin G, Uversky VN, Fink AL (2005) Methionine oxidation, alpha-synuclein and Parkinson’s disease. Biochim Biophys Acta 1703:157–169PubMedGoogle Scholar
  30. Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64:919–924PubMedCrossRefGoogle Scholar
  31. Herrera-Marschitz M, Bustamante D, Morales P, Goiny M (2007) Exploring neurocircuitries of the basal ganglia by intracerebral administration of selective neurotoxins. Neurotox Res 11:169–182PubMedCrossRefGoogle Scholar
  32. Hokenson MJ, Uversky VN, Goers J, Yamin G, Munishkina LA, Fink AL (2004) Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein. Biochemistry 43:4621–4633PubMedCrossRefGoogle Scholar
  33. Ikeda M, Kawarabayashi T, Harigaya Y, Sasaki A, Yamada S, Matsubara E, Murakami T, Tanaka Y, Kurata T, Wuhua X, Ueda K, Kuribara H, Ikarashi Y, Nakazato Y, Okamoto K, Abe K, Shoji M (2009) Motor impairment and aberrant production of neurochemicals in human alpha-synuclein A30P+A53T transgenic mice with alpha-synuclein pathology. Brain Res 1250:232–241PubMedCrossRefGoogle Scholar
  34. Jenner P (2005) Mechanisms of cell death in Parkinson’s disease. Neurotox Res 8:310Google Scholar
  35. Kontopoulos E, Parvin JD, Feany MB (2006) Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15:3012–3023PubMedCrossRefGoogle Scholar
  36. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Gen 18:106–108CrossRefGoogle Scholar
  37. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T Jr, Lansbury PT (2002) Alpha-synuclein, especially the Parkinson’s disease-associated mutants forms pore-like annular and tubular protofibrils. J Mol Biol 322:1089–1102PubMedCrossRefGoogle Scholar
  38. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1159–1161CrossRefGoogle Scholar
  39. Li HT, Lin DH, Luo XY, Zhang F, Ji LN, Du HN, Song GQ, Hu J, Zhou JW, Hu HY (2005) Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein. Implication for dopaminergic neurodegeneration. FEBS J 272:3661–3672PubMedCrossRefGoogle Scholar
  40. Manning-Bog AB, Langston JW (2007) Model fusion, the next phase in developing animal models for Parkinson’s disease. Neurotox Res 11:219–240PubMedCrossRefGoogle Scholar
  41. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788PubMedGoogle Scholar
  42. Marxreiter F, Nuber S, Kandasamy M, Klucken J, Aigner R, Burgmayer R, Couillard-Despres S, Riess O, Winkler J, Winner B (2009) Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J NeuroSci 29:879–890PubMedCrossRefGoogle Scholar
  43. Mazzulli JR, Mishizen AJ, Giasson BI, Lynch DR, Thomas SA, Nakashima A, Nagatsu T, Ota A, Ischiropoulos H (2006) Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 26:10068–10078PubMedCrossRefGoogle Scholar
  44. Mazzulli JR, Armakola M, Dumoulin M, Parastatidis I, Ischiropoulos H (2007) Cellular oligomerization of alpha-synuclein is determined by the interaction of oxidized catechols with a C terminal sequence. J Biol Chem 282:31621–31630PubMedCrossRefGoogle Scholar
  45. Munishkina LA, Fink AL, Uversky VN (2008) Concerted action of metals and macromolecular crowding on the fibrillation of alpha-synuclein. Protein Pept Lett 15:1079–1085PubMedCrossRefGoogle Scholar
  46. Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219PubMedCrossRefGoogle Scholar
  47. Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Hörsten S, Schmidt T, Boy J, Kuhn M, Nguyen HP, Teismann P, Schulz JB, Neumann M, Pichler BJ, Reischl G, Holzmann C, Schmitt I, Bornemann A, Kuhn W, Zimmermann F, Servadio A, Riess O (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28:2471–2484PubMedCrossRefGoogle Scholar
  48. Paleologou KE, Schmid AW, Rospigliosi CC, Kim HY, Lamberto GR, Fredenburg RA Jr, Lansbury PT, Fernandez CO, Eliezer D, Zweckstetter M, Lashuel HA (2008) Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J Biol Chem 283:16895–16905PubMedCrossRefGoogle Scholar
  49. Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Olea-Azar C, Segura-Aguilar J (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J Neurochem 77:519–529PubMedCrossRefGoogle Scholar
  50. Paris I, Martinez-Alvarad P, Cardenas S, Perez-Pastene C, Graumann R, Fuentes P, Olea-Azar C, Caviedes P P, Segura-Aguilar J (2005a) Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chem Res Toxicol 18:415–419PubMedCrossRefGoogle Scholar
  51. Paris I, Martinez-Alvarado P, Perez-Pastene C, Vieira MN, Olea-Azar C, Raisman-Vozari R, Cardenas S, Graumann R, Caviedes P, Segura-Aguilar J (2005b) Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron toxicity in cells derived from the substantia nigra. J Neurochem 92:1021–1032PubMedCrossRefGoogle Scholar
  52. Paris I, Cardenas S, Perez-Pastene C, Lozano J, Graumann R, Riveros A, Caviedes P, Segura-Aguilar J (2007) Aminochrome as preclinical model to study degeneration of dopaminergic neurons in Parkinson's Disease. Neurotox Res 12:125–134PubMedCrossRefGoogle Scholar
  53. Paris I, Lozan J, Cardenas, Perez-Pastene C, Saud K, Fuentes P, Caviedes P, Dagnino-Subiabre A, Raisman-Vozari, Shimahara T, Kostrzewa JP, Chi D, Kostrzewa RM, P Caviedes R, SeguraAguilar J (2008) The catecholaminergic RCSN-3 cell line: a model to study dopamine metabolism. Neurotox. Res. 13, 221-230Google Scholar
  54. Park JY, Lansbury PT Jr (2003) Beta-synuclein inhibits formation of alpha-synuclein protofibrils: a possible therapeutic strategy against Parkinson’s disease. Biochemistry 42:3696–3700PubMedCrossRefGoogle Scholar
  55. Peng X-M, Tehranian R, Dietrich P, Stefanis L, Perez RG (2005) Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci 118:3523–3530PubMedCrossRefGoogle Scholar
  56. Perez RG, Waymire J, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090–3099PubMedGoogle Scholar
  57. Plaas M, Karis A, Innos J, Rebane E, Baekelandt V, Vaarmann A, Luuk H, Vasar E, Koks S (2008) Alpha-synuclein A30P point-mutation generates age-dependent nigrostriatal deficiency in mice. J Physiol Pharmacol 59:205–216PubMedGoogle Scholar
  58. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047PubMedCrossRefGoogle Scholar
  59. Riveros A, Cuchillo I, Hanger D, Segura-Aguilar J, Stephenson J (2008) Studies on the effect of the aminochrome treatment in the axonal transport of alpha-synuclein. Neurotox Res 13:147Google Scholar
  60. Schell H, Hasegawa T, Neumann M, Kahle PJ (2009) Nuclear and Neuritic distribution of serine-129 phosphorylated alpha-synuclein in transgenic mice. Neuroscience 160:796–804PubMedCrossRefGoogle Scholar
  61. Schultzberg M, Segura-Aguilar J, Lind C (1988) Distribution of DT-diaphorase in the rat brain: biochemical and immunohistochemical studies. Neuroscience 27:763–766PubMedCrossRefGoogle Scholar
  62. Segura-Aguilar J (1989) Properties, isoforms, localization in the rat brain and possible role in dopamine metabolism. Academitryck AB, Stockholm, ISBN -91-7146-783-1Google Scholar
  63. Segura-Aguilar J (1996) Peroxidase activity of liver microsomal vitamin D 25 hydroxylase catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome. Biochem Mol Med 58:122–129PubMedCrossRefGoogle Scholar
  64. Segura-Aguilar J, Kostrzewa RM (2006) Neurotoxins and neurotoxicity mechanisms. An overview. Neurotox Res 10:263–287PubMedCrossRefGoogle Scholar
  65. Segura-Aguilar J, Lind C (1989) On the mechanism of Mn3+ induced neurotoxicity of dopamine: prevention of quinone derived oxygen toxicity by DT-diaphorase and superoxide dismutase. Chem Biol Interact 72:309–324PubMedCrossRefGoogle Scholar
  66. Segura-Aguilar J, Metodiewa D, Welch C (1998) Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim Biophys Acta 1381:1–6PubMedGoogle Scholar
  67. Segura-Aguilar J, Metodiewa D, Baez S (2001) The possible role of one electron reduction of aminochrome in the neurodegenerative processes of the dopaminergic systems. Neurotox Res 3:157–166PubMedCrossRefGoogle Scholar
  68. Segura-Aguilar J, Diaz-Veliz G, Mora S, Herrera-Marschitz M (2002) Inhibition of DTdiaphorase is a requirement for Mn3+ to produce a 6-OH-dopamine like rotational behaviour. Neurotoxicity Res 4:127–131CrossRefGoogle Scholar
  69. Segura-Aguilar J, Cardenas S, Riveros A, Fuentes-Bravo P, Lozano J, Graumann R, Paris I, Nassif M, Caviedes P (2006) DT-diaphorase prevents the formation of alpha-synuclein adducts with aminochrome Soc Neurosci Abstr 824: 17Google Scholar
  70. Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167PubMedCrossRefGoogle Scholar
  71. Smythies J, De Iuliis A, Zanatta L, Galzigna J (2002) The biochemical basis of Parkinson’s disease: the role of catecholamine o-quinones: a review-discussion. Neurotox Res 4:77–81PubMedCrossRefGoogle Scholar
  72. Sotiriou E, Vassilatis DK, Vila M, Stefanis L (2009) Selective noradrenergic vulnerability in alpha-synuclein transgenic mice Neurobiol Aging [Epub ahead of print]Google Scholar
  73. Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha synuclein in Lewy bodies. Nature 388:839–840PubMedCrossRefGoogle Scholar
  74. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473PubMedCrossRefGoogle Scholar
  75. Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29:1690–1701PubMedCrossRefGoogle Scholar
  76. Sulzer D, Talloczy Z, Mosharov EM, Martinez-Vicente M, Cuervo AM (2008) Alpha synuclein and autophagy as an early step in Parkinson’s disease. Neurotox Res 13:120Google Scholar
  77. Terland O, Flatmark T, Tangeras A, Gronberg M (1997) Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species. J Mol Cell Cardiol 29:1731–1738PubMedCrossRefGoogle Scholar
  78. Thompson CM, Capdevila JH, Strobel HW (2000) Recombinant cytochrome P450 2D18 metabolism of dopamine and arachidonic acid. J Pharmacol Exp Ther 294:1120–1130PubMedGoogle Scholar
  79. Uversky VN (2008) Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci 9:507–540PubMedCrossRefGoogle Scholar
  80. Volles MJ, Lansbury PT Jr (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42:7871–7878PubMedCrossRefGoogle Scholar
  81. Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC Jr, Lansbury PT (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819PubMedCrossRefGoogle Scholar
  82. Wakamatsu M, Ishii A, Ukai Y, Sakagami J, Iwata S, Ono M, Matsumoto K, Nakamura A, Tada N, Kobayashi K, Iwatsubo T, Yoshimoto M (2007) Accumulation of phosphorylated alpha-synuclein in dopaminergic neurons of transgenic mice that express human alpha-synuclein. J Neurosci Res 85:1819–1825PubMedCrossRefGoogle Scholar
  83. Whitehead RE, Ferrer JV, Javitch JA, Justice JB (2001) Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem 76:1242–1251PubMedCrossRefGoogle Scholar
  84. Williams A (1984) MPTP Parkinsonism. Br Med J 289:1401–1402CrossRefGoogle Scholar
  85. Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, Winkler J (2008) Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29:913–925PubMedCrossRefGoogle Scholar
  86. Wislet-Gendebien S, Visanji NP, Whitehead SN, Marsilio D, Hou W, Figeys D, Fraser PE, Bennett SA, Tandon A (2008) Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors. BMC Neurosci 9:92PubMedCrossRefGoogle Scholar
  87. Xu Y, Stokes AH, Roskoski R Jr, Vrana KE (1998) Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res 54:691–697PubMedCrossRefGoogle Scholar
  88. Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606PubMedCrossRefGoogle Scholar
  89. Yamin G, Glaser CB, Uversky VN, Fink AL (2003a) Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. J Biol Chem 278:27630–27635PubMedCrossRefGoogle Scholar
  90. Yamin G, Uversky VN, Fink AL (2003b) Nitration inhibits fibrillation of human alpha-synuclein in vitro by formation of soluble oligomers. FEBS Lett 542:147–152PubMedCrossRefGoogle Scholar
  91. Yu WH, Matsuoka Y, Sziráki I, Hashim A, Lafrancois J, Sershen H, Duff KE (2008) Increased dopaminergic neuron sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in transgenic mice expressing mutant A53T alpha-synuclein. Neurochem Res 33:902–911PubMedCrossRefGoogle Scholar
  92. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Muñoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRefGoogle Scholar
  93. Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220PubMedCrossRefGoogle Scholar
  94. Zhao DL, Zou LB, Zhou LF, Zhu P, Zhu HB (2007) A cell-based model of alpha-synucleinopathy for screening compounds with therapeutic potential of Parkinson’s disease. Acta Pharmacol Sin 28:616–626PubMedCrossRefGoogle Scholar
  95. Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR (2000) Overexpression of human alphasynuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon derived cells. Brain Res 866:33–43PubMedCrossRefGoogle Scholar
  96. Zhu M, Li J, Fink AL (2003) The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278:40186–40197PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Irmgard Paris
    • 1
  • Jorge Lozano
    • 1
  • Carolina Perez-Pastene
    • 1
  • Patricia Muñoz
    • 1
  • Juan Segura-Aguilar
    • 1
  1. 1.Program of Molecular and Clinical Pharmacology, Faculty of MedicineICBMCasilla Santiago-7Chile

Personalised recommendations