Skip to main content

Advertisement

Log in

Nur(R1)turing a Notion on the Etiopathogenesis of Parkinson’s Disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The canonical histopathological feature of Parkinson’s disease (PD) is the loss of dopaminergic neurons in the ventral midbrain. Although the common sporadic/idiopathic form of PD most often presents clinically at around 60 years of age when the levels of striatal dopamine and numbers of ventral dopaminergic neurons are posited to have declined by 80 and 60%, respectively, the temporal pattern of injury to these vulnerable cells is unknown. The conventional view is that PD results from an accelerated age-related loss of dopamine neurons. However, an alternative hypothesis is that dopamine neuron loss is a developmental phenomenon. What evidence might support this alternative view? Apart from the rare familial forms, wherein loss or gain of function mutations in single genes convey highly penetrant PD, sporadic disease is genetically complex and may have other contributory non-genetic components. Epidemiologic and twin studies have strongly implicated gene–environmental interaction as a pathogenic dyad in the etiology of PD. Among the most attractive candidates that may connect the environment to inherited vulnerability is the nuclear receptor, Nurr1. Encoding an orphan transcription factor that is expressed at high levels within discrete regions of the developing and adult mammalian brain, Nurr1 is essential for the formation of ventral midbrain dopamine neurons. Given the absence of a known lipophilic small molecule regulator and established transcriptional role in the formation of the definitive dopaminergic phenotype, Nurr1 represents an intriguing molecule to explore in the context of sporadic PD as a developmental disorder. The study described herein addresses two features of Nurr1 biology that provide plausibility for this hypothesis. First is the description of Nurr1 regulation of a potent dopaminergic neuronal trophic factor, vasoactive intestinal peptide (VIP), and second is the identification of a protein, termed Nurr1 interacting protein (NuIP) that appears to link upstream signaling pathways in the regulation of Nurr1 transcriptional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136:317–324

    Article  PubMed  CAS  Google Scholar 

  • Bäckman C, Perlmann T, Wallén A, Hoffer B, Morales M (1999) A selective group of dopaminergic neurons express NURR1 in the adult mouse brain. Brain Res 851:125–132

    Article  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R, Gozes I, Brenneman DE, McKay RD (2000) A glia-derived signal regulating neuronal differentiation. J Neurosci 20:8012–8020

    PubMed  CAS  Google Scholar 

  • Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823:1–10

    Article  PubMed  CAS  Google Scholar 

  • Carmine A, Buervenich S, Galter D, Jonsson EG, Sedvall GC, Farde L, Gustavsson JP, Bergman H, Chowdari KV, Nimgaonkar VL, Anvret M, Sydow O, Olson L (2003) NURR1 promoter polymorphisms: Parkinson’s disease, schizophrenia, and personality traits. Am J Med Genet B Neuropsychiatr Genet 120:51–57

    Article  Google Scholar 

  • Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998

    Article  PubMed  CAS  Google Scholar 

  • Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A (2000) Inflammatory changes in the substantia nigra and striatum following MPTP intoxication. Ann Neurol 48:127

    Article  PubMed  CAS  Google Scholar 

  • Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A, Peter D, Stefano GB (2002) Immune processes in the pathogenesis of Parkinson’s disease—a potential role for microglia and nitric oxide. Med Sci Monit 8:RA165–RA177

    PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2003a) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. Faseb J 17:1922–1924

    PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2003b) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. Faseb J 17:944–946

    PubMed  CAS  Google Scholar 

  • Delgado M, Jonakait GM, Ganea D (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39:148–161

    Article  PubMed  Google Scholar 

  • Delgado M, Pozo D, Ganea D (2004) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56:249–290

    Article  PubMed  CAS  Google Scholar 

  • Delgado M, Varela N, Gonzalez-Rey E (2008) Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia 56:1091–1103

    Article  PubMed  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401

    Article  PubMed  CAS  Google Scholar 

  • Gozes I, Brenneman DE (1996) Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J Mol Neurosci 7:235–244

    Article  PubMed  CAS  Google Scholar 

  • Gressens P (1999) VIP neuroprotection against excitotoxic lesions of the developing mouse brain. Ann N Y Acad Sci 897:109–124

    Article  PubMed  CAS  Google Scholar 

  • Gressens P, Marret S, Hill JM, Brenneman DE, Gozes I, Fridkin M, Evrard P (1997) Vasoactive intestinal peptide prevents excitotoxic cell death in the murine developing brain. J Clin Investig 100:390–397

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Hunot S, Hirsch EC (2003) Inflammation and dopaminergic neuronal loss in Parkinson’s disease: a complex matter. Exp Neurol 184:561–564

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Sonsalla PK (1992) The MPTP-treated mouse as a model of parkinsonism: how good is it? Neurochem Int 20(Suppl):299S–303S

    Article  PubMed  CAS  Google Scholar 

  • Hering R, Petrovic S, Mietz EM, Holzmann C, Berg D, Bauer P, Woitalla D, Muller T, Berger K, Kruger R, Riess O (2004) Extended mutation analysis and association studies of Nurr1 (NR4A2) in Parkinson disease. Neurology 62:1231–1232

    PubMed  CAS  Google Scholar 

  • Hermanson E, Joseph B, Castro D, Lindqvist E, Aarnisalo P, Wallen A, Benoit G, Hengerer B, Olson L, Perlmann T (2003) Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 288:324–334

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44:S115–S120

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228

    PubMed  CAS  Google Scholar 

  • Iversen L, Foster AC, Hill RG, Iversen SD, Kemp JA, Leeson PD, Rupniak NM, Saywell K, Tricklebank MD, Williams BJ (1992) Neurotoxin-related research: from the laboratory to the clinic. Ann N Y Acad Sci 648:207–218

    Article  PubMed  CAS  Google Scholar 

  • Iwayama-Shigeno Y, Yamada K, Toyota T, Shimizu H, Hattori E, Yoshitsugu K, Fujisawa T, Yoshida Y, Kobayashi T, Toru M, Kurumaji A, Detera-Wadleigh S, Yoshikawa T (2003) Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 118:20–24

    Article  Google Scholar 

  • Jakowec MW, Petzinger GM (2004) 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned model of Parkinson’s disease, with emphasis on mice and nonhuman primates. Comp Med 54:497–513

    PubMed  CAS  Google Scholar 

  • Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, Cha CI (2004) Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 476:388–413

    Article  PubMed  CAS  Google Scholar 

  • Kim K-S, Kim C-H, Hwang D-Y, Seo H, Chung S, Hong SJ, Lim J-K, Anderson T, Isacson O (2003) Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem 85:622–634

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. N Engl J Med 309:310

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  • Law SW, Conneely OM, DeMayo FJ, O’Malley BW (1992) Identification of a new brain-specific transcription factor, Nurr1. Mol Endocrinol 6:2129–2135

    Article  PubMed  CAS  Google Scholar 

  • W-d Le, Conneely OM, He Y, Jankovic J, Appel SH (1999a) Reduced nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J Neurochem 73:2218–2221

    Google Scholar 

  • W-d Le, Conneely OM, Zou L, He Y, Saucedo-Cardenas O, Jankovic J, Mosier DR, Appel SH (1999b) Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp Neurol 159:451–458

    Article  Google Scholar 

  • Le W, Chen S, Jankovic J (2009) Etiopathogenesis of Parkinson disease: a new beginning? Neuroscientist 15:28–35

    Google Scholar 

  • Levecque C, Destee A, Mouroux V, Amouyel P, Chartier-Harlin MC (2004) Assessment of Nurr1 nucleotide variations in familial Parkinson’s disease. Neurosci Lett 366:135–138

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Henricksen LA, Giuliano RE, Prifti L, Callahan LM, Federoff HJ (2007) VIP is a transcriptional target of Nurr1 in dopaminergic cells. Exp Neurol 203:221–232

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Xing F, Guiliano R, Federoff HJ (2008) Identification of a novel nurr1-interacting protein. J Neurosci 28:9277–9286

    Article  PubMed  CAS  Google Scholar 

  • Maguire-Zeiss KA, Federoff HJ (2003) Convergent pathobiologic model of Parkinson’s disease. Ann N Y Acad Sci 991:152–166

    PubMed  CAS  Google Scholar 

  • McCormack AL, Di Monte DA (2003) Effects of l-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J Neurochem 85:82–86

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (1998) Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord 12(Suppl 2):S1–S6

    PubMed  CAS  Google Scholar 

  • McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86:83–89

    PubMed  CAS  Google Scholar 

  • Nichols WC, Uniacke SK, Pankratz N, Reed T, Simon DK, Halter C, Rudolph A, Shults CW, Conneally PM, Foroud T (2004) Evaluation of the role of Nurr1 in a large sample of familial Parkinson’s disease. Mov Disord 19:649–655

    Article  PubMed  Google Scholar 

  • Orth M, Tabrizi SJ (2003) Models of Parkinson’s disease. Mov Disord 18:729–737

    Article  PubMed  Google Scholar 

  • Perier C, Bove J, Vila M, Przedborski S (2003) The rotenone model of Parkinson’s disease. Trends Neurosci 26:345–346

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–198

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Gasser T, Stoltze L (2007) Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 188:117–127

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti P, Mitchell TR, Grannerman JG, Bannon MJ (2001) Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 76:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Sakurada K, Ohshma-Sakurada M, Palmer T, Gage F (1999) NURR1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126:4017–4026

    PubMed  CAS  Google Scholar 

  • Saucedo-Cardenas O, Kardon R, Ediger TR, Lydon JP, Conneely OM (1997) Cloning and structural organization of the gene encoding the murine nuclear receptor transcription factor, NURR1. Gene 187:135–139

    Article  PubMed  CAS  Google Scholar 

  • Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach JP, Conneely OM (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 95:4013–4018

    Article  PubMed  CAS  Google Scholar 

  • Smits SM, Ponnio T, Conneely OM, Burbach JPH, Smidt MP (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J NeuroSci 18:1731–1738

    Article  PubMed  Google Scholar 

  • Steingart RA, Solomon B, Brenneman DE, Fridkin M, Gozes I (2000) VIP and peptides related to activity-dependent neurotrophic factor protect PC12 cells against oxidative stress. J Mol Neurosci 15:137–145

    Article  PubMed  CAS  Google Scholar 

  • Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2007) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701

    Article  PubMed  CAS  Google Scholar 

  • Tan EK, Chung H, Zhao Y, Shen H, Chandran VR, Tan C, Teoh ML, Yih Y, Pavanni R, Wong MC (2003) Genetic analysis of Nurr1 haplotypes in Parkinson’s disease. Neurosci Lett 347:139–142

    Article  PubMed  CAS  Google Scholar 

  • Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW (1999) Parkinson disease in twins: an etiologic study. JAMA 281:341–346

    Article  PubMed  CAS  Google Scholar 

  • Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20:9207–9214

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ (2003) Rotenone neurotoxicity: a new window on environmental causes of Parkinson’s disease and related brain amyloidoses. Exp Neurol 179:6–8

    Article  PubMed  Google Scholar 

  • Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423:555–560

    Article  PubMed  CAS  Google Scholar 

  • Wersinger C, Sidhu A (2002) Inflammation and Parkinson’s disease. Curr Drug Targets Inflamm Allergy 1:221–242

    Article  PubMed  CAS  Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. Faseb J 17:500–502

    PubMed  CAS  Google Scholar 

  • Wullner U, Klockgether T (2003) Inflammation in Parkinson’s disease. J Neurol 250(Suppl 1):I35–I38

    PubMed  Google Scholar 

  • Xu PY, Liang R, Jankovic J, Hunter C, Zeng YX, Ashizawa T, Lai D, Le WD (2002) Association of homozygous 7048G7049 variant in the intron six of Nurr1 gene with Parkinson’s disease. Neurology 58:881–884

    PubMed  CAS  Google Scholar 

  • Zetterström R, Solomin L, Jansson L, Hoffer B, Olson L, Perlmann T (1997) Dopamine neuron angenesis in NURR1-deficient mice. Science 276:248–249

    Article  PubMed  Google Scholar 

  • Zhou CJ, Shioda S, Yada T, Inagaki N, Pleasure SJ, Kikuyama S (2002) PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr Protein Pept Sci 3:423–439

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Federoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Federoff, H.J. Nur(R1)turing a Notion on the Etiopathogenesis of Parkinson’s Disease. Neurotox Res 16, 261–270 (2009). https://doi.org/10.1007/s12640-009-9056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9056-7

Keywords

Navigation