Skip to main content
Log in

Glugea sp. infecting Sardinella aurita in Algeria

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Parasitological examination of the commercially important pelagic fish Sardinella aurita Valenciennes, 1847 (Clupeidae) from the Eastern coast of Algeria revealed xenomas in the peritoneal cavity, suggesting a microsporidian infection. The prevalence of the disease was approximately 30% on average, higher in smaller individuals and showing significant seasonal variation. The xenomas contained numerous ellipsoidal spores, surrounded by a dense layer of connective tissue. Spore sizes were 6.10 ± 0.38 µm length and 3.54 ± 0.43 µm width. Ultrastructural examination by transmission electron microscopy showed various development stages of the parasite, including meronts, sporonts, sporoblasts and mature spores. The internal organization of the mature spores, with a single nucleus, prominent posterior vacuole, a lamellar polaroplast and an isofilar polar tube arranged in a single row, was typical of the genus Glugea. The DNA sequence of the small subunit ribosomal RNA gene confirmed that this parasite belongs to the genus Glugea. Genetic and morphologic comparison with G. sardinellensis, a species previously described in the same host from Tunisia shows many similarities, although some molecular and morphometric inconsistencies precluded the unambiguous assignment of our samples to G. sardinellensis. At the same time, we do not find sufficient grounds to erect a new taxon for our parasite. We discuss the implications of our findings for the current state of the systematics of Glugea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Genetic sequence data generated in this study were deposited in GenBank with Accession Numbers (MT680621).

References

  • Abadi S, Azouri D, Pupko T (2019) Model selection may not be a mandatory step for phylogeny reconstruction. Nat Commun 10:934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abdel-Baki AS, Dkhil MA, Al-Quraishy S (2009) Seasonality and prevalence of microsporidium sp. infecting lizard fish, Saurida undosquamis from the Arab Gulf. J King Saud Univ (science) 21:195–198

    Article  Google Scholar 

  • Abdel-Baki AS, Al-Quraishy S, Al-Qahtani H, Dkhil MA, Azevedo C (2012) Morphological and ultrastructural description of Pleistophora dammami sp. n. infecting the intestinal wall of Saurida undosquamis from the Arabian Gulf, Saudi Arabia. Parasitol Res 111:413–418

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Baki AS, Ahmad F, Tamihi A-Q, Al-Quraishy S, Mansour L (2015a) Glugea jazanensis sp. nov. infecting Lutjanus bohar in the Red Sea: ultrastructure and phylogeny. Dis Aquat Org 116:185–190

    Article  CAS  Google Scholar 

  • Abdel-Baki AS, Al-Quraishy S, Rocha S, Dkhil MA, Casal G, Azevedo C (2015b) Ultrastructure and phylogeny of Glugea nagelia sp. n. (Microsporidia: Glugeidae), infecting the intestinal wall of the yellowfin hind, Cephalopholis hemistiktos (Actinopterygii: Serranidae), from the Red Sea. Folia Parasitol 62:007

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignement search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alexandros S (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform V 30(9):1312–1313

    Article  CAS  Google Scholar 

  • Azevedo C, Abdel-Baki AS, Rocha S, Al-Quraishy S, Casal G (2016) Ultrastructure and phylogeny of Glugea arabica n. sp. (Microsporidia), infecting the marine fish Epinephelus polyphekadion from the Red Sea. Eur J Protistol 52:11–21. https://doi.org/10.1016/j.ejop.2015.09.003

    Article  PubMed  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291(5503):447–545

    Article  CAS  PubMed  Google Scholar 

  • Berrebi P, Bouix G (1978) Premières observations sur une microsporidiose de l’athérine des étangs languedociens, Atherina boyeri Risson, 1810 (poisson, Téléostéen) [Preliminary results on a microsporidiosis of Atherina boyeri Risso, 1810, from the Languedoc lagoons]. Ann Parasitol Hum Comp 53(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Berrebi P (1979) Ultrastructure studies of Glugea atherinae n. sp., Microsporidia parasites of Atherina boyeri Risso 1810 (pisces, telestaen) in the languedoc and provence lagoons. Z Parasitenkd 60:105–122

    Article  Google Scholar 

  • Bouaziz A, Bennoui A, Brahmi B, Semroud R (2001) Sur l’estimation de l’état d’exploitation de la sardinelle (Sardinella aurita Valenciennes, 1847) de la région centre de la côte algérienne [On the estimation of the state of exploitation of the sardinella (Sardinella aurita Valenciennes, 1847) of the central region of the Algerian coast]. Rapport Commun Internationale Mer Méditerranée 36:244

    Google Scholar 

  • Bouaziz A (2007) La sardinelle (Sardinella aurita, Valencienne, 1847) des côtes algériennes, distribution, biologie et estimation des biomasses. Thèse de doctorat d’état [The sardinella (Sardinella aurita, Valencienne, 1847) of the Algerian coasts, distribution, biology and estimation of biomasses. Thesis of doctorate of state] U.S.T.HB. p 135

  • Bounhiol JP (1921) Sur la biologie de l’allache (Sardinella aurita valenc.) des côtes d’Algérie [On the biology of the allache (Sardinella aurita valenc.) of the Algerian coast]. Rapport présenté au congrès de Strasbourg de l'Association française pour l'avancement des sciences (AFAS) 1920.

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

  • Cali A, Becnel JJ, Takvorian PM (2017a) Microsporidia. In: Archibald J, Simpson A, Slamovits C (eds) Handbook of the Protists. Springer. https://doi.org/10.1007/978-3-319-28149-0_27

  • Cali A, Becnel JJ, Takvorian PM (2017b) Microsporidia. In: Handbook of the Protists, pp 1559–1618. https://doi.org/10.1007/978-3-319-28149-0_27

  • Cali A, Takvorian PM (1991) The incidence of Glugea stephani (Protozoa: Microsporidia) in winter flounder, Pseudopleuronectes americanus, from the New York-New Jersey Lower Bay Complex and factors influencing it. Can J Zool 69:317–321

    Article  Google Scholar 

  • Canning EU, Hazard EI (1982) Genus Pleistophora Gurley, 1893; an assemblage of at least three genera. J Protozool 29:39–49

    Article  Google Scholar 

  • Chavance P, Chabane F, Hemida F, Korichi HS, Sanchez MP, Bouchereau GL, Tomasini GA, Djabali F (1985) Evaluation du rendement par recrue relatif à partir de fréquences de tailles: application a quelques stocks d’anchois, de sardinelles et de chinchards de la méditerranée occidentale. FAO Rapport Pèche 347:186–220

    Google Scholar 

  • Caffara M, Quaglio F, Marcer F, Florio D, Fioravanti ML (2010) Intestinal microsporidiosis in European Seabass (Dicentrarchus labrax L.) farmed in Italy. Bull Eur Assoc Fish Pathol 30(6):237

    Google Scholar 

  • Casal G, Rocha S, Costa G, Al-Quraishy S, Azevedo C (2016) Ultrastructure and molecular characterization of Glugea serranus n. sp., a microsporidian infecting the blacktail comber, Serranus atricauda (Teleostei: Serranidae, in the Madeira Archipelago (Portugal). Parasitol Res 115:3963–3972

    Article  PubMed  Google Scholar 

  • Dechtiar AO (1965) Preliminary observations of Glugea hertwigi Weissenberg, 1911 (Microsporidia; Glugeidae) in American smelt, Osmerus mordax (Mitchill) from Lake Erie. Can Fish Cult 34:3538

    Google Scholar 

  • Derbel H, Chaari M, Neifar L (2012) Digenean species diversity in teleost fishes from the gulf of gabes. Tunisia (western mediterranean). Parasites 19:129–135

    Article  CAS  Google Scholar 

  • Dykova I, Lom J, Egusa S (1980) Tissue reaction to Glugea plecoglossi infection in its natural host, Plecoglossus altevelis. Folia Parasitological (PRAHA) 27:213–216

    CAS  Google Scholar 

  • Dykova I (1995) Phylum microspore. In: Woo PTK (ed) Fish diseases and disorders, protozoan and metazoan infections. Cambridge international, vol 1, pp 149–179

  • Dieuzeide R, Roland J (1957) Étude biométrique de Sardina Pilchardus walb. et de Sardinella aurita c.v., capturées dans la baie de Castiglione [Biometric study of Sardina Pilchardus walb. and Sardinella aurita c.v., caught in Castiglione Bay]. Bulletin De La Station D’aquiculture Et De Pêche Castiglione 8:111–216

    Google Scholar 

  • Feki M, Chaari M, Neifar L (2015) Spatial variability of helminth parasites and evidence for stock discrimination in the round sardinella, Sardinella aurita (Valenciennes, 1847), off the coast of Tunisia. J Helminthol 90:353–358

    Article  PubMed  Google Scholar 

  • Frenette AP, Matthias E, Haakon H, Michael DB, Burta L, Michael SD (2016) Integrative approach for the reliable detection and specific identification of the microsporidium Loma morhua in Atlantic cod (Gadus morhua). J Eukaryot Microbiol. ISSN 1066–5234.

  • Haine ER, Brondani E, Hume KD, Perrot-Minnot MJ, Gaillard M, Rigaud T (2004) Coexistence of three microsporidia parasites in populations of the freshwater amphipod Gammarus roeseli: evidence for vertical transmission and positive effect on reproduction. Int J Parasitol 34:1137–1146

    Article  PubMed  Google Scholar 

  • Haine ER, Motreuil S, Rigaud T (2007) Infection by a vertically-transmitted microsporidian parasite is associated with a female-biased sex ratio and survival advantage in the amphipod Gammarus roeseli. Parasitology 134:1363–1367

    Article  CAS  PubMed  Google Scholar 

  • Hamida C (2003) Biologie et dynamique de la sardinelle : Sardinella aurita (Valenciennes, 1847) dans le golfe de Annaba [Biology and dynamics of the sardinella: Sardinella aurita (Valenciennes, 1847) in the Gulf of Annaba]. Mémoire de magistère. université Badji Mokhtar. Annaba, p 67

  • Jithendran KP, Vijayan KK, Kailasam M (2011) Microsporidian (Glugea sp.) infection in the greasy grouper Epinephelus tauvina (Forsskal, 1775). Indian J Fish 58(3):125–127

  • Jones HS, Ahonen L, Granlund T, Arsiola TJ (2017) Two novel microsporidia in skeletal muscle of pike-perch Sander lucioperca and Burbot lota lota in finland. J Parasitol 103(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Kartas F, Quignard JP (1976) Contribution a` l’étude de l’allache (Sardinella aurita Val., 1847) des côtes de Libye [Contribution to the study of the allache (Sardinella aurita Val., 1847) from the Libyan coast]. Rapport Commun Internationale Mer Méditerranée 23:33–34

    Google Scholar 

  • Kazutaka K, Daron M (2013) Standley, MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol V 30(4):772–780

    Article  CAS  Google Scholar 

  • Kent ML, Shaw RW, Sanders JL (2014) Fish Microsporidia. In: Weiss LM, Becnel JJ (eds) Microsporidia: Pathogens of Opportunity. Wiley Enterprise, pp 493–520

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lom J, Dyková I (2005) Microsporidian xenomas in fish seen in wider perspective. Folia Parasitol 52(1–2):69–81

    Article  Google Scholar 

  • Lovy J, Kostka M, Dyková I, Arsenault G, Pecková H, Wright GM, Speare DJ (2009) Phylogeny and morphology of Glugea hertwigi from rainbow smelt Osmerus mordax found in Prince Edward Island, Canada. Dis Aquat Org 86:235–243

    Article  CAS  Google Scholar 

  • MacNeil C, Dick JTA, Hatcher MJ, Fielding NJ, Hume KD, Dunn AM (2003) Parasite transmission and cannibalism in an Amphipod (Crustacea). Int J Parasitol 33:795–798

    Article  PubMed  Google Scholar 

  • Mansour L, Prensier G, Ben Jemaa S, Ben Hassine OM, Méténier G, Vivarès CP, Cornillot E (2005) Description of a xenoma-inducing microsporidian, Microgemma Tincae n. sp., parasite of the teleost fish Symphodus Tinca from Tunisian coasts. Dis Aquat Org 65:217–226

    Article  CAS  Google Scholar 

  • Mansour L, Ben Hassine OM, Vivares CP, Cornillot E (2013) Spraguea lophii (Microsporidia) parasite of the teleost fish, Lophius piscatorius from Tunisian coasts: evidence for an extensive chromosome length polymorphism. Parasitol Int 62:66–74

    Article  CAS  PubMed  Google Scholar 

  • Mansour L, Thabet A, Harrath AA, Al Omar SY, Mukhtar A, Sayed SR, Abdel-Baki AS (2016) New microsporidia, Glugea sardinellensis n. sp. (Microsporea, Glugeida) found in Sardinella Aurita Valenciennes, 1847, collected off Tunisian coasts. Acta Protozoologica 55:281–290

    Article  CAS  Google Scholar 

  • Mansour L, Zhang J,. Abdel-Haleem HM, Darwish AB, Al-Quraishy S, Abdel-Baki AS (2020) Ultrastructural description and phylogeny of a novel microsporidian, Glugea eda n. sp. from the striated fusilier, Caesio striata, in the Red Sea off Saudi Arabia. Acta Tropica. https://doi.org/10.1016/j.actatropica.2020.105331

  • Mautner SI, Cook KA, Forbes MR, Mccurdy DG, Dunn AM (2007) Evidence for sex ratio distortion by a new Microsporidian parasite of a Corophiid Amphipod. Parasitology 134:1567–1573

    Article  CAS  PubMed  Google Scholar 

  • Miwa S, Kamaishi T, Hirae T, Murase T, Nishioka T (2011) Encephalomyelitis associated with microsporidian infection in farmed greater amberjack, Seriola dumerili (Risso). J Fish Dis

  • Mladineo I, Lovy J (2011) A new xenoma-forming microsporidium infecting intestinal tract of Atlantic bluefin tuna (Thunnus thynnus). Acta Parasitol 56(4):339–347

    Article  Google Scholar 

  • Morsy K, Bashtar AR, Abdel-Ghaffar F, Al-Quraishy S (2013) Morphological and phylogenetic description of a new xenoma-inducing microsporidian, microsporidium aurata nov. sp., parasite of the gilthead Seabream Sparus aurata from the Red Sea. Parasitol Res 112:3905–3915

    Article  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nilsen F, Endresen C, Hordvic I (1998) Molecular and phylogeny of Microsporidians with particular reference to species that infect the muscle of fish. J Eukaryot Microbiol 45(5):535–543

    Article  CAS  PubMed  Google Scholar 

  • Ovcharenko M, Wróblewski P, Kvach Y, Drobiniak O (2017) Study of Loma acerinae (Microsporidia) detected from three Ponto-Caspian gobies (gobiidae) in Ukraine. Parasitol Res. https://doi.org/10.1007/s00436-017-5422-1

    Article  PubMed  Google Scholar 

  • Palenzuela O, Redondo MJ, Cali A, Takvorian PM, Alonso- Naveiro M, Alvarez-Pellitero P, Sitjà-Bobadilla A (2014) A new intranuclear microsporidium, Enterospora nucleophilan. sp., causing an emaciative syndrome in a piscine host (Sparus aurata), prompts the redescription of the family enterocytozoonidae. Int J Parasitol 44:189–203

    Article  PubMed  Google Scholar 

  • Phelps NBD, Mor SK, Armien AG, Pelican KM, Goyal SM (2015) Description of the microsporidian parasite, Heterosporis sutherlandae n. sp., infecting fish in the great lakes region. USA Plos One 10: e0132027

  • Pomport-Castillon C, De Jonckheere JF, Romestand B (2000) Ribosomal DNA sequences of Glugea anomala, G. stephani, G. americanus and Spraguea lophii (Microsporidia): phylogenetic reconstruction. Dis Aquat Org 40:125–129

    Article  CAS  Google Scholar 

  • Ramdani S, Trilles JP, Ramdane Z (2020) Parasitic fauna of sardinella aurita valenciennes, 1847 from algerian coast. Zool Ecol 30(1):102–108. https://doi.org/10.35513/21658005.2020.2.3

    Article  Google Scholar 

  • Rasband W (1987) ImageJ version 1.45 s software

  • Sabates A, Martín P, Lloret J, Raya V (2006) Sea warming and fish distribution: the case of the small pelagic fish, sardinella aurita, in the western mediterranean. Glob Change Biol 12(11):2209–2219. https://doi.org/10.1111/j.1365-2486.2006.01246.x

    Article  Google Scholar 

  • Scarborough AB, Weidner E (1979) Field and Laboratory Studies of Glugea hertwigi (Microsporida) in the Rainbow Smelt Osmerus mordax. Biol Bull 157:334–343

    Article  Google Scholar 

  • Slothouber-Galbreath JGM, Smith JE, Terry RS, Becnel JJ, Am D (2004) Invasion success of Fibrillanosema crangonycis, n.sp., n.g.: a novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. Int J Parasitol 34:235–244

    Article  PubMed  Google Scholar 

  • Speare DJ, Beaman HJ, Jones SRM, Markham RJF, Arsenault GJ (1998) Induced resistance of rainbow trout to gill disease associated with the microsporidian gill parasite Loma salmonae. J Fish Dis 21:93–100

    Article  CAS  PubMed  Google Scholar 

  • Stentiford GD, Feist SW, Stone DM, Bateman KS, Dunn AM (2013) Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems. Trends Parasitol 29:567–578

    Article  PubMed  Google Scholar 

  • Su Y, Fen J, Sun X, Jiang J, Guo Z, Ye L, Xu L (2014) A new species of Glugea Thelohan, 1891 in the red seabream Pagrus major (Temminck & Schlegel) (Teleostei:Sparidae) from China. Syst Parasitol 89:175–183. https://doi.org/10.1007/s11230-014-9519-y

    Article  PubMed  Google Scholar 

  • Takvorian P, Weiss L, Cali A (2005) The early events of Brachiola algerae (Microsporidia) infection: spore germination, sporoplasm structure, and development within host cells. Folia Parasitol 52:118–129

    Article  Google Scholar 

  • Takahashi S, Egusa S (1977) Studies on Glugea infection of the ayu, Plecoglossus altivelis–III. Effect of water temperature on the development of xenoma of Glugea plecoglossi. Fish Pathology 11:195–200

    Article  Google Scholar 

  • Thélohan P (1895) Recherches sur les Myxosporidies. Bulletin Scientifique De La France Et De La Belgique 5:100–394

    Google Scholar 

  • Tokarev Y, Voronin VN, Senderskiy IV, Issi IV (2015) The microsporidium Glugea gasterostei Voronin, 1974 (Microsporidia: Marinosporidia) from the three-spined stickleback Gasterosteus aculeatus (Actinopterygii: Gasterosteiformes) as an independent species. Parazitologiia 49(2):81–92

    CAS  PubMed  Google Scholar 

  • Vávra J, Lukeš J (2013) Microsporidia and the art of living together. Adv Parasitol 82:253–319

    Article  PubMed  Google Scholar 

  • Vossbrinck CR, Debrunner-Vossbrick BA (2005) Molecular phylogeny of the Microsporidia: ecological, ultrastructure and taxonomic considerations. Folia Prasitologica 52:131–142

    Article  CAS  Google Scholar 

  • Weissenberg R (1911) Uber einige Microsporidien aus Fischen (Nosema lophii Doflein, Glugea anomala Monlez, Glugea hertwigii nov. spec.). Sitzungsberg Ges Naturf Freunde Berlin 8:344–357

    Google Scholar 

  • Wu HB, Wu YS, Wu ZH (2005) Occurrence of a new microsporidium in the abdominal cavity of Epinephelus akaara. Acta Hydrobiol Sin 29:150–154

    CAS  Google Scholar 

  • Yokoyama H, Lee SJ, Bell AS (2002) Occurrence of a new microsporidium in the skeletal muscle of the flying fish Cypselurus pinnatibarbatus japonicus (exocoetidae) from Yakushima, Japan. Folia Parasitolologica 49(1):9–15

    Article  Google Scholar 

  • Zhou QJ, chai FC, Chen J, (2017) First record of Glugea plecoglossi (Takahashi and Egusa, 1977) Microsporidian parasite of Ayu (Plecoglossus altivelis altivelis Temminck and Schlegel, 1846) in Mainland China. J Fish Dis 41:165–169

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We warmly thank the fishermen from Bejaia (Algeria) for their help in collecting fishes. We are grateful to all the members of "Génie biologique des cancers" Bejaia University, for their helpful assistance. We also thank the Institute of Comparative Genomics, Dalhousie University, Canada for space and infrastructure support.

Funding

This work is supported by the Laboratoire de zoologie appliquée et d’écophysiologie animale, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia (06000), Algérie and Department of Biochemistry and Molecular Biology and Institute of Comparative Genomics, Dalhousie University, Canada.

Author information

Authors and Affiliations

Authors

Contributions

S.R. wrote the main manuscript text, prepared all figures, extracted all DNA associated to the study. Z.R. is the supervisor of S.R., contributed to the wrinting of the manuscript text, sample collection, provided advice during this study. S.R. and C.S. designed the primers used during PCR, cloning analysis. C.S. contributed to the phylogenetics analysis and writing of the manuscript. J.-P.T. contributed to the wrinting and correction of the manuscript text. All authors read and approved the manuscript.

Corresponding author

Correspondence to Souhila Ramdani.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramdani, S., Ramdane, Z., Slamovits, C.H. et al. Glugea sp. infecting Sardinella aurita in Algeria. J Parasit Dis 46, 672–685 (2022). https://doi.org/10.1007/s12639-022-01483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-022-01483-5

Keywords

Navigation