Skip to main content
Log in

Distribution of different species of metacercariae in two freshwater fishes: Haludaria fasciata (Teleostei: Cyprinidae) and Pseudosphromenus cupanus (Teleostei: Osphromenidae)

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Information on the distribution and abundance patterns of trematodes are essential to reveal the ecology of host–parasite interactions. The Western Ghats of India, a biodiversity hotspot, is rich in freshwater fish diversity and endemism. Though there are several studies on various other aspects of fish ecology, studies on their parasitic fauna is meager. The objective of the present study is to explore the distribution and infection patterns of metacercariae of five species of trematodes in the freshwater fishes, Haludaria fasciata and Pseudosphromenus cupanus. The infection parameters were analyzed for each host and CART model was applied to analyze the environmental factors affecting parasite distribution patterns. All species of metacercariae showed an over-dispersed aggregate distributions. The classification tree models indicated that among the environmental factors considered, differences in host locality was the most influential factor in both fishes, followed at a greater distance by the factor seasonality. The parasite communities exhibited temporal and spatial differences in the infection pattern in response to seasonal and locational variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander N (2012) Analysis of parasite and other skewed counts. Trop Med Int Health 17(6):684–693

    PubMed  PubMed Central  Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions. I. Regulatory precesses. J Anim Ecol 47:219–247

    Google Scholar 

  • Begon M, Townsed CR, Harper JL (2006) Ecology. from individuals to ecosystems, 4th edn. Blackwell Publishing, Hoboken

    Google Scholar 

  • Biggeri A (2005) Negative binomial distribution. In: Armitage P, Colton T (eds) Encyclopedia of Biostatistics, vol 5, 2nd edn. Wiley, Chi Chester, pp 3625–3630

    Google Scholar 

  • Blakeslee AMP, Altman I, Miller AW, Byers JE, Hamer CE, Ruiz GM (2011) Parasites and invasions: a biogeographic examination of parasites and hosts in native and introduced ranges. J Biogeogr. https://doi.org/10.1111/j.1365-2699.2011.02631.x

    Article  Google Scholar 

  • Blasco-Costa I, Koehlern AV, Martin A, Poulin R (2013) Upstream-downstream gradient in infection levels by fish parasites: a common river pattern? Parasitology 140:266–274

    PubMed  Google Scholar 

  • Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton, p 396

    Google Scholar 

  • Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont, CA

    Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583

    CAS  PubMed  Google Scholar 

  • Chakraborty A, Rumki S, Koushik G (2017) An inventory of endemic fish species in India with notes on state-wise distribution and conservation measures. Int J Fish Aquat Stud 5(1):253–264

    Google Scholar 

  • Chipeta MG, Ngwira BM, Simoonga C, Kazembe LN (2014) Zero adjusted models with applications to analyzing helminthes count data. BMC Res Notes 7:856. https://doi.org/10.1186/1756-0500-7-856

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen JE, Poulin R, Lagrue C (2016) Linking parasite populations in hosts to parasite populations in space through Taylor’s law and the negative binomial distribution. Proc Natl Acad Sci USA 114:47–56

    Google Scholar 

  • Crofton HD (1971) A quantitative approach to parasitism. Parasitology 63:179–193

    Google Scholar 

  • Dahanukar N, Raut R, Bhat A (2004) Distribution, endemism and threat status of freshwater fishes in the Western Ghats of India. J Biogeogr 31:123–136

    Google Scholar 

  • Dahanukar N, Raghavan R, Ali A, Abraham R, Shaji C (2011) The status and distribution of freshwater fishes of the Western Ghats. In: Molur S, Smith KG, Daniel BA, Darwall WRT (Compilers) International Union for Conservation of Nature (IUCN) Gland, Switzerland and Zoo Outreach Organization (ZOO), Coimbatore, pp 21–48

  • De’Ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83(4):1105–1117

    Google Scholar 

  • De’Ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192

    Google Scholar 

  • Delignette-Muller M, Pouillot R, Denis J, Dutang C (2014) fitdistrplus: help to fit of a parametric distribution to non-censored or censored data. R package version 1.0–2

  • Dunn PK, Smyth GK (2018) Generalized linear models with examples in R. Springer, New York, p 562

    Google Scholar 

  • Gazzinelli A, Oliveira-Prado R, Ferreira-Matoso L, Veloso BM, Andrade G, Kloos H, Bethong JM, Assunçao RM, Correa-Oliveira R (2017) Schistosoma mansoni reinfection: analysis of risk factors by classification and regression tree (CART) modeling. PLoS ONE 12(8):182–197

    Google Scholar 

  • Graczyk TK, Fayer R, Cranfield MR (1997) Zoonotic transmission of Cryptosporidium parvum: implications for water-borne cryptosporidiosis. Parasitol Today 13(9):348–351

    CAS  PubMed  Google Scholar 

  • Grenfell BT, Gulland FMD (1995) Introduction: ecological impact of parasitism on wildlife host populations. Parasitology 111:3–14

    Google Scholar 

  • Holmes JC (1987) The structure of helminth communities. Int J Parasitol 17:203–208

    CAS  PubMed  Google Scholar 

  • Izenman AJ (2008) Modern multivariate statistical techniques: regression, classification and manifold learning. Springer, New York, p 733

    Google Scholar 

  • Jaenike J (1994) Aggregations of nematode parasites within Drosophila: proximate causes. Parasitology 108:569–577

    PubMed  Google Scholar 

  • Kabacoff RI (2015) R in action. Data analysis and graphics with R, 2nd edn. Manning Publications Co., Shelter Island, p 579

    Google Scholar 

  • Keymer A (1982) Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology 84(3):573–587

    CAS  PubMed  Google Scholar 

  • Kingsland SE (1995) Modeling nature. Episodes in the history of population ecology, 2nd edn. The University of Chicago Press, Chicago, p 306

    Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper Collins Publishers Inc, New York, p 654

    Google Scholar 

  • Krebs CJ (2001) Ecology. The experimental analysis of distribution and abundance, 5th edn. Benjamin Cummings, an imprint of Addison Wesley Longman Inc., San Francisco, p 695

    Google Scholar 

  • Lafferty KD (1999) The evolution of trophic transmission. Parasitol Today 15(3):111–115

    CAS  PubMed  Google Scholar 

  • Lester RJG (1984) A review of methods for estimating mortality due to parasites in wild fish populations. Helgolander Meeresunters 37:53–64

    Google Scholar 

  • Lester RJG (2012) Over dispersion in marine fish parasites. J Parasitol 98(4):718–721

    CAS  PubMed  Google Scholar 

  • Li SY, Hsü HF (1951) On the frequency distribution of parasitic helminthes in their naturally infected hosts. J Parasitol 37:32–41

    CAS  PubMed  Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Patterns in the distribution of species. Princeton University Press, Princeton, p 269

    Google Scholar 

  • Mangel M (2006) The theoretical biologist’s toolbox. Quantitative methods for ecology and evolutionary biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Marquet PA (2009) Macro-ecological perspectives on communities and ecosystems. In: Levin SA (ed) The Princeton guide to ecology. Princeton University Press, Princeton, pp 386–394

    Google Scholar 

  • May RM, Southwood TRE (1990) Introduction. In: Shorrocks B, Swingland IR (eds) Living in a patchy environment. Oxford University Press, Oxford, pp 107–125

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall/CRC, London, p 511

    Google Scholar 

  • Milborrow S (2018) Plotting rpart trees with rpart.plot package. R package. https://CRAN.R-project.org/package=rpart.plot

  • O’hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122

    Google Scholar 

  • Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20:328–336

    PubMed  Google Scholar 

  • Paterson RA, Knudsen R, Blasco-Costa I, Dunn AM, Hytterod S, Hansen H (2019) Determinants of parasite distribution in Arctic charr populations: catchment structure versus dispersal potential. J Helminthol 93:559–566. https://doi.org/10.1017/S0022149X18000482

    Article  CAS  PubMed  Google Scholar 

  • Poulin R (1993) The disparity between observed and uniform distributions: a new look at parasite aggregation. Int J Parasitol 23:937–944

    CAS  PubMed  Google Scholar 

  • Poulin R (1998) Large-scale patterns of host use by parasites of freshwater fishes. Ecol Lett 1:118–128. https://doi.org/10.1046/j.1461-0248.1998.00022.x

    Article  Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton, p 332

    Google Scholar 

  • Poulin R (2013) Explaining variability in parasite aggregation levels among host samples. Parasitology 140:541–546

    PubMed  Google Scholar 

  • Poulin R, Morand S (2000) Parasite body size and interspecific variation in levels of aggregation among nematodes. J Parasitol 86(3):642–647

    CAS  PubMed  Google Scholar 

  • Poulin R, Closs GP, Lill AWT, Hicks AS, Herrmann KK, Kelly DW (2012) Migration as an escape from parasitism in New Zealand galaxiid fishes. Oecologia 169:955–963

    PubMed  Google Scholar 

  • Price PW (1990) Host populations as resources defining parasite community organization. In: Esch G, Bush A, Aho J (eds) Parasite communities: patterns and processes. Chapman and Hall, London, pp 21–40

    Google Scholar 

  • Qian SS (2017) Environmental and ecological statistics with R, 2nd edn. CRC Press, Taylor & Francis Group, Boca Ratón, p 535

    Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Raghaven R, Dahanukar N, Tlusty MF, Rhyne AL, Kumar KK, Molur S, Rosser AM (2013) Uncovering an obscure trade: threatened freshwater fishes and the aquarium pet markets. Biol Conserv 164:158–169

    Google Scholar 

  • Reiczigel J, Marozzi M, Fabian I, Rozsa L (2019) Biostatistics for parasitologists—a primer to quantitative parasitology. Trends Parasitol 35(4):277–281

    PubMed  Google Scholar 

  • Rhodes JR (2015) Mixture models for over dispersed data. In: Fox GA, Negrete-Yankelevich S, Sosa VJ (eds) Ecological statistics: contemporary theory and application. Oxford University Press, Oxford, pp 284–308

    Google Scholar 

  • Roff DA (2006) Introduction to computer-intensive methods of data analysis in biology. Cambridge University Press, Cambridge, p 368

    Google Scholar 

  • Rosa R, Puglieses A (2002) Aggregation, stability, and oscillations in different models for host-macro-parasite interactions. Theor Popul Biol 61:319–334

    PubMed  Google Scholar 

  • Rossiter W, Davidson HM (2018) Extrinsic and intrinsic predictors of variation in infection by Posthodiplostomum minimum MacCallum, 1921 (Trematoda) in sunfishes (Lepomis Rafinisque, 1819) from eastern Ohio. J Parasitol 104(3):202–209

    PubMed  Google Scholar 

  • Salgado-Maldonado G, Novelo-turcotte MT, Vazquez G, Caspetamandujano JM, Quiroz-Martinez B, Favila M (2014) The communities of helminth parasites of Heterandria bimaculata (Teleostei: Poeciliidae) from the upper Río La Antigua basin, east-central Mexico show a predictable structure. Parasitology 141:970–980

    PubMed  Google Scholar 

  • Schmidt GD, Roberts LS (2000) Foundations of parasitology, 6th edn. McGraw-Hill Higher Education (A Division of the McGraw-Hill Companies), Boston, p 670

    Google Scholar 

  • Shaw DJ, Dobson AP (1995) Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111:111–133

    Google Scholar 

  • Shaw DJ, Grenfell BT, Dobson AP (1998) Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117:597–610

    PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Company, New York, p 887

    Google Scholar 

  • Southwood TRF, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell Science Ltd, London, p 575

    Google Scholar 

  • Therneau T, Atkinson B, Ripley B (2019) Rpart: recursive partitioning and regression trees. Mayo Foundation Rochester, MN, USA. https://cran.r-project.org/web/packages/rpart/index.html

  • Thieltges DW, Christian H, Dehling DM, Brändle M, Brandl R, Poulin R (2011) Host diversity and latitude drive trematode diversity patterns in the European freshwater fauna. Glob Ecol Biogeogr 20:675–682

    Google Scholar 

  • Tinsley RC, Vineer HR, Grainger-Wood R, Morgan ER (2019) Heterogeneity in helminth infections: factors influencing aggregation in a simple host-parasite system. Parasitology 147(1):65–77. https://doi.org/10.1017/S003118201900129X

    Article  CAS  PubMed  Google Scholar 

  • Vignon M, Sasal P (2010) Multiscale determinants of parasite abundance: a quantitative hierarchical approach for coral reef fishes. Int J Parasitol 40(4):443–451

    PubMed  Google Scholar 

  • Warburton EM, Vonhof MJ (2018) From individual heterogeneity to population-level over dispersion: quantifying the relative roles of host exposure and parasite establishment in driving aggregated helminth distributions. Int J Parasitol 48(34):309–318

    PubMed  Google Scholar 

  • Wilson K, Grenfell BT (1997) Generalized linear modelling for parasitologists. Parasitol Today 13(1):33–38

    CAS  PubMed  Google Scholar 

  • Wilson K, Bjornstad ON, Dobson AP, Merler S, Poglayen G, Randolph SE, Read AF, Skorping A (2002) Chapter 2: Heterogeneities in macroparasite infections: patterns and processes. In: Hudson PJ, Rizzoli A, Grenfell BT, Heersterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 6–44

    Google Scholar 

Download references

Funding

This work was supported by Kerala State Council for Science, Technology and Environment (KSCSTE), Government of Kerala as a Research Fellowship (KSCSTE /972/2018-FSHP-MAIN Dated 23/01/2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. P.J. J.: collection of fishes, isolation of parasites, concept of the manuscript and writing of the manuscript. P.A.: statistical analysis and writing of the manuscript. P.K.P.: concept of the manuscript and editing of the manuscript. All authors read, revised, and approved the final draft.

Corresponding author

Correspondence to P. K. Prasadan.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jithila, P.J., Abaunza, P. & Prasadan, P.K. Distribution of different species of metacercariae in two freshwater fishes: Haludaria fasciata (Teleostei: Cyprinidae) and Pseudosphromenus cupanus (Teleostei: Osphromenidae). J Parasit Dis 46, 113–123 (2022). https://doi.org/10.1007/s12639-021-01421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-021-01421-x

Keywords

Navigation