Skip to main content
Log in

In vitro effect of artemether-loaded nanostructured lipid carrier (NLC) on Leishmania infantum

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Visceral leishmaniasis (VL) is an acute and deadly form of leishmaniasis, caused by Leishmania infantum parasite. Due to the toxicity and side effects of conventional treatment options, such as glucantime and other pentavalent drugs, finding novel drugs with fewer adverse effects is required. Artemether (ART), is one of the derivatives of artemisinin, which was shown to be effective in treating malaria and more recently, leishmaniasis. In this fundamental-applied research, we compared the effect of ART and nanostructure loaded with artemether (NLC-ART) on Leishmania infantum promastigotes and amastigotes, at different concentrations (2.5–5-10–25-50–100 μg/ml) using the MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay method after 24 and 48 h of treatment. Inhibitory concentration (IC50) values (μg/ml) of promastigote and amastigote of L. infantum to ART/ NLC-ART, after 48 h of treatment, were found to be 37.12 / 32.1 and 16.43 / 15.42, respectively. Moreover, we found that (NLC-ART), had the lowest cytotoxicity against the J774 macrophage cell line. Conclusion: The NLC-ART can be a good candidate for the treatment of visceral leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Availability of data and materials

The dataset used and/or analyzed during the current study is available from the corresponding author upon reasonable request.

Abbreviations

FBS:

Fetal bovine serum

NLC:

Nanostructured lipid carrier

NLC-ART:

Artemether-loaded nanostructured lipid carrier

DMSO:

Dimethyl sulfoxide; AMB: Amphotericin B

References

  • Alborzi A, POULADFAR GR, AALAMI MH (2007) Visceral leishmaniasis; literature review and Iranian experience.

  • Alborzi A, Rasouli M, Shamsizadeh A (2006) Leishmania tropica–isolated patient with visceral leishmaniasis in southern Iran. Am J Trop Med Hyg 74(2):306–307

    Article  Google Scholar 

  • Asgari Q, Gholizadeh F, Nohtani M, Mirzaeipour M, Zare M, Bahreini MS (2019) Cutaneous leishmaniasis associated with Systemic Lupus Erythematosus (SLE). Infez Med 27(3):345–349

    PubMed  Google Scholar 

  • Barazesh A et al (2018) Preparation of meglumine antimonate loaded albumin nanoparticles and evaluation of its anti-leishmanial activity: an in vitro assay. JOPD 42(3):416–422

    Google Scholar 

  • Basselin M, Denise H, Coombs GH, Barrett MP (2002) Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. AAC 46(12):3731–3738

    Article  CAS  Google Scholar 

  • Benita S (2005) Microencapsulation: methods and industrial applications. Crc Press, Florida

    Book  Google Scholar 

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33(10):2373–2387

    Article  CAS  Google Scholar 

  • Burgess JL, Birchall R (1972) Nephrotoxicity of amphotericin B, with emphasis on changes in tubular function. AJM 53(1):77–84

    Article  CAS  Google Scholar 

  • Costa L et al (2015) Evaluation of PCR in the diagnosis of canine leishmaniasis in two different epidemiological regions: Campinas (SP) and Teresina (PI). Brazil Epidemiol Infect 143(5):1088–1095

    Article  CAS  Google Scholar 

  • Croft S, Neal R, Pendergast W, Chan J (1987) The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. BCP 36(16):2633–2636

    CAS  Google Scholar 

  • Dehkordi NM, Ghaffarifar F, Hassan ZM, Heydari FE (2013a) In vitro and in vivo studies of anti leishmanial effect of artemether on Leishmania infantum. Jundishapur J Microbiol 6(5):e6379

    Google Scholar 

  • Dehkordi NM, Ghaffarifar F, Hassan ZM, Heydari FE (2013b) In vitro and in vivo studies of anti leishmanial effect of artemether on Leishmania infantum. Jundishapur J Microbiol 6(5):1H

    Google Scholar 

  • Desjeux P (1999) Global control and Leishmania HIV co-infection. Clin Dermatol 17(3):317–325

    Article  CAS  Google Scholar 

  • Ebrahimisadr P, Ghaffarifar F, Hassan ZM (2013) In-vitro evaluation of antileishmanial activity and toxicity of artemether with focus on its apoptotic effect. IJPR 12(4):903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esfandiari F et al (2019) Paromomycin-loaded mannosylated chitosan nanoparticles: synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop 197:105072

    Article  CAS  Google Scholar 

  • Ghaffarifar F, Heydari FE, Dalimi A, Hassan ZM, Delavari M, Mikaeiloo H (2015) Evaluation of apoptotic and antileishmanial activities of Artemisinin on promastigotes and BALB/C mice infected with Leishmania major. IJP 10(2):258

    Google Scholar 

  • Ghasemiyeh P, Azadi A, Daneshamouz S, Mohammadi Samani S (2017) Cyproterone acetate-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): preparation and optimization. TIPS 3(4):275–286

    CAS  Google Scholar 

  • Goto H, Lindoso JAL (2010) Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. EXPERT 8(4):419–433

    Google Scholar 

  • John DT, Petri WA (2013) Markell and Voge's Medical Parasitology-E-Book. Elsevier Health Sciences,

  • Junior MSdCL, Hartkopf ACL, de Souza Tsujisaki RA, Oshiro ET, Shapiro JT, Matos MdFC, Dorval MEC (2018) Isolation and molecular characterization of Leishmania infantum in urine from patients with visceral leishmaniasis in Brazil. Acta Trop 178:248–251

    Article  Google Scholar 

  • Le Fichoux Y, Rousseau D, Ferrua B, Ruette S, Lelièvre A, Grousson D, Kubar J (1998) Short-and long-term efficacy of hexadecylphosphocholine against established Leishmania infantum infection in BALB/c mice. AAC 42(3):654–658

    Article  Google Scholar 

  • Lukeš J et al (2007) Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. PNAS 104(22):9375–9380

    Article  Google Scholar 

  • McGready R, Cho T, Cho JJ, Simpson JA, Luxemburger C, Dubowitz L, Looareesuwan S, White NJ, Nosten F (1998) Artemisinin derivatives in the treatment of falciparum malaria in pregnancy. RSM 92(4):430–433

    CAS  Google Scholar 

  • McGwire B, Satoskar A (2013) Leishmaniasis: clinical syndromes and treatment. QJM Int J Med 107(1):7–14

    Article  Google Scholar 

  • Milbradt J, Auerochs S, Korn K, Marschall M (2009) Sensitivity of human herpesvirus 6 and other human herpesviruses to the broad-spectrum antiinfective drug artesunate. J Clin Virol 46(1):24–28

    Article  CAS  Google Scholar 

  • Mohebali M et al (2005) Epidemiological aspects of canine visceral leishmaniosis in the Islamic Republic of Iran. Vet Parasitol 129(3–4):243–251

    Article  Google Scholar 

  • Murray HW (2002) Kala-azar—progress against a neglected disease. Mass Medical Soc,

  • Nordin N, Yeap SK, Zamberi NR, Abu N, Mohamad NE, Rahman HS, How CW, Masarudin MJ, Abdullah R, Alitheen NB (2018) Characterizationand toxicity of citral incorporated with nanostructured lipid carrier. PeerJ 6:e3916

    Article  Google Scholar 

  • Organization WH (2010) Control of the leishmaniases: report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases. World Health Organization, Geneva

    Google Scholar 

  • Poche DM, Grant WE, Wang H-H (2016) Visceral leishmaniasis on the Indian subcontinent: modelling the dynamic relationship between vector control schemes and vector life cycles. PLoS Negl Trop Dis 10(8):e0004868

    Article  Google Scholar 

  • Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3(11):1041

    Article  CAS  Google Scholar 

  • Santos DO et al (2008) Leishmaniasis treatment—a challenge that remains: a review. Parasitol Res 103(1):1–10

    Article  Google Scholar 

  • Sen R, Ganguly S, Saha P, Chatterjee M (2010) Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents 36(1):43–49

    Article  CAS  Google Scholar 

  • Shuhua X, Chollet J, Weiss NA, Bergquist RN, Tanner M (2000) Preventive effect of artemether in experimental animals infected with Schistosoma mansoni. Parasitol Int 49(1):19–24

    Article  CAS  Google Scholar 

  • Singh S, Sivakumar R (2003) Recent advances in the diagnosis of leishmaniasis. JPGM 49(1):55

    CAS  PubMed  Google Scholar 

  • Sundar S, Chatterjee M (2006) Visceral leishmaniasis-current therapeutic modalities. Indian J Med Res 123(3):345

    CAS  PubMed  Google Scholar 

  • Xiao S, Booth M, Tanner M (2000) The prophylactic effects of artemether against Schistosoma japonicum infections. Parasitol Today 16(3):122–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The results presented in this research were extracted from Meisam khazaei M.Sc. student. The dissertation was supported by the research council of Shiraz University of Medical Sciences.

Funding

This study was financially supported by the vice-chancellor for research affairs of Shiraz University of Medical Sciences, Shiraz, Iran (Grant No. 97–01-01–17263).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in this study: Parasite and cell culture, statistical analysis, promastigote in vitro cytotoxicity assay, J774 macrophages in vitro cytotoxicity assay, data collection, [Meisam Khazaei, Vahid Rahnama, Mohammad Hossein Motazedian, Soliman Mohammadi Samani, Gholamreza Hatam], preparation of nano structure loaded with artemether (NLC-ART) [Vahid Rahnama].

Corresponding author

Correspondence to Mohammad Hossein Motazedian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

This study was approved by the ethics committee of Shiraz University of Medical Sciences (IR.SUMS.REC.1397.1038).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaei, M., Rahnama, V., Motazedian, M.H. et al. In vitro effect of artemether-loaded nanostructured lipid carrier (NLC) on Leishmania infantum. J Parasit Dis 45, 964–971 (2021). https://doi.org/10.1007/s12639-021-01373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-021-01373-2

Keywords