Skip to main content
Log in

Assessment of chitosan nanoparticles in improving the efficacy of nitazoxanide on cryptosporidiosis in immunosuppressed and immunocompetent murine models

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Cryptosporidiosis is one of the major causes of diarrhea in immunocompetent and immunocompromised patients. It is self-limited in immunocompetent individuals. However, in the immunocompromised it can cause life-threatening diarrhea and results in chronic malabsorption of fluids, vitamins and electrolytes resulting in wasting. Our study is concerned with assessing and comparing the efficacy of nitazoxanide (NTZ) alone and NTZ loaded chitosan nanoparticles (NTZ loaded CS NPs) in the treatment of experimental cryptosporidiosis using parasitological and histopathological parameters. One hundred mice were divided into 5 groups (20 mice each). Each group was divided into 2 subgroups according to the immune status [a-immunocompetent, b-immunosuppressed]. group 1: control (healthy), group 2: control infected by Cryptosporidium oocysts, group 3: infected treated by NTZ, group 4: infected then treated by NTZ loaded CS NPs and group 5: infected then treated by chitosan nanoparticles (CS NPs) alone. Treatment of Cryptosporidium infected mice with NTZ loaded on CS NPs resulted in the highest significant reduction in oocysts shedding in both immunocompetent and immunosuppressed groups followed by treatment with NTZ form then by treatment with CS NPs alone. The treatment with NTZ loaded CS NPs displayed a remarkable improvement of the histopathological changes of the intestine, liver and lung while NTZ treated group showed some improvement. Treatment with NTZ loaded CS NPs in murine cryptosporidiosis gave the best results as it caused marked reduction in fecal oocysts counts and improvement of histopathological changes in immunocompetent and immunosuppressed groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdelhamed EF, Fawzy EM, Ahmed SM, Zalat RS, Rashed HE (2019) Effect of nitazoxanide, artesunate loaded polymeric nano fiber and their combination on experimental cryptosporidiosis. Iran J Parasitol 14(2):240–249

    PubMed  PubMed Central  Google Scholar 

  • Abdou AG, Harba NM, Afifi AF, Elnaidany NF (2013) Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia. Int J Infect Dis 17:593–600

    Article  CAS  Google Scholar 

  • AbuEl Ezz NT, Khalil FA, Shaapan RM (2011) Therapeutic effect of onion (Allium cepa) and cinnamon (Cinnamomum zeylanicum) oils on cryptosporidiosis in experimentally infected mice. Glob Vet 7(2):179–183

    Google Scholar 

  • Ahmed SA, El-Mahallawy HS, Karanis P (2019) Inhibitory activity of chitosan nanoparticles against Cryptosporidium parvum oocysts. Parasitol Res 118:2053

    Article  PubMed  Google Scholar 

  • Akakuru OU, Louis H, Amos PI, Akakuru OC, Nosike EI, Ogulewe EF (2018) The chemistry of chitin and chitosan justifying their nanomedical utilities. Biochem Pharmacol (Los Angel) 7:1

    Google Scholar 

  • Aly NSM, Selem RF, Zalat RS, Khalil H, Hussien BE (2017) An innovative repurposing of mefloquine; assessment of its therapeutic efficacy in treating Cryptosporidium infection in both immunocompetent and immunocompromised mice. J Egypt Soc Parasitol 47(2):253–262

    Article  Google Scholar 

  • Amadi B, Mwiya M, Musuku J, Watuka A, Sianongo S, Ayoub A, Kelly P (2002) Effect of nitazoxanide on morbidity and mortality in Zambian children with cryptosporidiosis: a randomised controlled trial. Lancet 360:1375–1380

    Article  PubMed  Google Scholar 

  • Aydogdu U, Coskun A, Atas AD, Basbug O, Agaoglu ZT (2019) The determination of treatment effect of chitosan oligosaccharide in lambs with experimentally cryptosporidiosis. Small Rumin Res 180:27–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Benamrouz S, Guyot K, Gazzola S, Mouray A, Chassat T, Delaire B, Chabe M, Gosset P, Viscogliosi E, Dei-Cas E, Creusy C, Conseil V, Certad G (2012) Cryptosporidium parvum infection in SCID mice infected with only one oocyst, qPCR assessment of parasite replication in tissues and development of digestive cancer. PLoS ONE 7(12):512–532

    Article  CAS  Google Scholar 

  • Bouzid M, Kintz E, Hunter PR (2018) Risk factors for Cryptosporidium infection in low and middle income countries: a systematic review and meta-analysis. PLoS Negl Trop Dis 12(6):e0006553

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabada MM, White AC Jr (2010) Treatment of cryptosporidiosis: Do we know what we think we know? Curr Opin Infect Dis 23(5):494–499

    Article  CAS  PubMed  Google Scholar 

  • Campbell PN, Current WL (1983) Demonstration of serum antibodies to Cryptosporidium sp. in normal and immunodeficient humans with confirmed infections. J Clin Microbiol 18:165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Certad G, Benamrouz S, Guyot K, Mouray A, Chassat T, Flament N et al (2012) Fulminant cryptosporidiosis after near-drowning: a human Cryptosporidium parvum strain implicated in invasive gastrointestinal adenocarcinoma and cholangiocarcinoma in an experimental model. Appl Environ Microbiol 78:1746–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Certad G, Creusy C, Guyot K, Mouray A, Chassat T, Delaire B et al (2010) Fulminant cryptosporidiosis associated with digestive adenocarcinoma in SCID miceinfected with Cryptosporidium parvum TUM1 strain. Int J Parasitol 40:1469–1475

    Article  PubMed  Google Scholar 

  • Chai JY, Guk SM, Han HK, Yun CK (1999) Role of intraepithelial lymphocytesin mucosal immune responses of mice experimentally infected with Cryptosporidium parvum. J Parasitol 85:234–239

    Article  CAS  PubMed  Google Scholar 

  • Chalmers RM, Katzer F (2013) Looking for Cryptosporidium: the application of advances in detection and diagnosis. Trends Parasitol 29:237–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Checkley W, White AC Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Houpt ER (2015) A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis 15(1):85–94

    Article  PubMed  Google Scholar 

  • Current WL, Reese NC, Ernst JV, Bailey WS, Heyman MB, Weinstein WM (1983) Human cryptosporidiosis in immunocompetent and immunodeficient persons. Studies of an outbreak and experimental transmission. N Engl J Med 308:1252–1257

    Article  CAS  PubMed  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Drury RA, Wallington EA (1980) Carleton histological techniques, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  • Eissa MM, El-Azzouni MZ, Mady RF, Fathy FM, Baddour NM (2012) Initial characterization of an autoclaved Toxoplasma vaccine in mice. Exp Parasitol 131:310–316

    Article  CAS  PubMed  Google Scholar 

  • El Shafei OK, Saad AE, Harba NM, Sharaf OF, Samak RM, Farag AS (2018) Therapeutic effect of phenyl vinyl sulfone and nitazoxanide on experimentally infected mice with cryptosporidiosis. Menoufia Med J 31:786–794

    Google Scholar 

  • Elawamy WE, Mohram AF, Naguib MM, Ali HS, Kishik SM, Hendawi FF (2019) Therapeutic role of chitosan nanoparticles in murine schistosomiasis mansoni. J Med Plants Res 13(18):443–451

    Article  CAS  Google Scholar 

  • Enemark HL, Bille-Hansen V, Lind P, Heegaard PMH, Vigre H, Ahrens P, Thamsborg SM (2003) Pathogenicity of Cryptosporidium parvum evaluation of an animal infection model. Vet Parasitol 113:35–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etewa SE, Abo El-Maaty DA, Hamza RS, Metwaly AS, Sarhan MH, Abdel-Rahman SA, Fathy GM, El-Shafey MA (2018) Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice. J Parasit Dis 42(1):102–113

    Article  PubMed  Google Scholar 

  • Fayer R (2008) General biology. In: Fayer R, Xiao L (eds) Cryptosporidium and cryptosporidiosis, 2nd edn. CRC Press, New York, pp 1–42

    Google Scholar 

  • Fayer R, Xiao L (2008) Cryptosporidium and cryptosporidiosis. CRC Press, Boca Raton, pp 1–560

    Google Scholar 

  • Finch GR, Daniels CW, Black EK, Schaefer FW, Belosevic M (1993) Dose response of Cryptosporidium parvum in outbred neonatal CD-1 mice. Appl Environ Microbiol 59:3661–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaafar MR (2007) Effect of solar disinfection on viability of intestinal protozoa in drinking water. J Egypt Soc Parasitol 37:65–86

    PubMed  Google Scholar 

  • Garcia LS (2007) Clinically important human parasites, intestinal protozoa, Cryptosporidium spp. In: Diagnostic medical parasitology. L.S. Garcia, 5th edn, vol 2, pp 771–812. ASM press, Washington DC

  • Garcia LS, Bruckner DA (1997) Macroscopic and microscopic examination of fecal specimens. Diagnostic medical parasitology, 3rd edn. AMS press, Washington DC, pp 608–649

    Google Scholar 

  • Gargala G, François A, Favennec L, Rossignol JF (2013) Activity of halogeno-thiazolides against Cryptosporidium parvum in experimentally infected immunosuppressed gerbils (Meriones unguiculatus). Antimicrob Agents Chemother 57(6):2821–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerace E, Lo Presti VDM, Biondo C (2019) Cryptosporidium infection: epidemiology, pathogenesis, and differential diagnosis. Eur J Microbiol Immunol 9(4):119–123

    Article  CAS  Google Scholar 

  • Henriksen SA, Pohlenz JF (1981) Staining of cryptosporidia by a modified Ziehl–Neelsen technique. Acta Vet Scand 22:594–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N et al (2007) Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrob Agents Chemother 51:868–876

    Article  CAS  PubMed  Google Scholar 

  • Kayser O (2001) A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions. Int J Pharm 214:83–85

    Article  CAS  PubMed  Google Scholar 

  • Khalifa AM, El Temsahy MM, Abou El Naga IF (2001) Effect of ozone on the viability of some protozoa in drinking water. J Egypt Soc Parasitol 31:603–616

    CAS  PubMed  Google Scholar 

  • Kirkwood BR (2003) Essential medical statistics. Blackwell science, Inc., 350 Main street, Malden, Massachusetts 0214-5020, Blackwell, USA. ISBN 978-0-86542871-3

  • Lacroix S, Mancassola R, Naciri M, Laurent F (2001) Cryptosporidium parvum-specific mucosal immune response in C57BL/6 neonatal and gamma interferon-deficient mice: role of tumor necrosis factor alpha in protection. Infect Immun 69:1635–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie E, Geoffrey J, James M (1991) Statistical analysis. In: Kirkpatrick LA, Feeney BC (eds) Interpretation and uses of medical statistics, 4th edn. Oxford Scientific Publications, Oxford, pp 411–416

    Google Scholar 

  • Li X, Brasseur P, Agnamey P, Leméteil D, Favennec L, Ballet JJ, Rossignol JF (2003) Long-lasting anticryptosporidial activity of nitazoxanide in an immunosuppressed rat model. Folia Parasitol (Praha) 50(1):19–22

    Article  CAS  Google Scholar 

  • Luppi B, Bigucci F, Cerchiara T, Zecchi V (2010) Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv 7:811–828

    Article  CAS  PubMed  Google Scholar 

  • Luzardo Álvarez A, Blanco García E, Guerrero Callejas F, Gómez Couso H, Blanco Méndez J (2012) In vitro evaluation of the suppressive effect of chitosan/polyvinyl alcohol microspheres on attachment of C. parvum to enterocytic cells. Eur J Pharm Sci 47:215–227

    Article  PubMed  CAS  Google Scholar 

  • Madbouly NT, Hebat SA, Yousof HA, El-Sayed SH, Younis AI, Mohamed SJ (2017) Atorvastatin repurposing for the treatment of cryptosporidiosis in experimentally immunosuppressed mice. Exp Parasitol 181:57–69

    Article  CAS  Google Scholar 

  • Mahmood MN, Ramadan FN, Hassan MS, Sabry HY, Magdy MM (2016) Introducing miltefosine as an anti-cryptosporidial agent in immunocompromised mice. J Plant Pathol Microbiol 7:354

    Google Scholar 

  • Mammeri M, Chevillot A, Thomas M, Polack B, Julien C, Marden JP, Auclair E, Vallee I, Adjou KT (2018) Efficacy of chitosan, a natural polysaccharide, against Cryptosporidium parvum in vitro and in vivo in neonatal mice. Exp Parasitol 194:1–8

    Article  CAS  PubMed  Google Scholar 

  • McCole DF, Eckmann L, Laurent F, Kagnoff MF (2000) Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection. Infect Immun 68:1710–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mead JR, Arrowood MJ, Sidwell RW, Healey MC (1991) Chronic Cryptosporidium parvum infections in congenitally immunodeficient SCID and nude mice. J Infect Dis 163:1297–1304

    Article  CAS  PubMed  Google Scholar 

  • Miller T, Schaefer FW (2007) Changes in mouse circulating leukocyte in C57Bl/6 mice immunosuppressed with dexamethasone for Cryptosporidium parvum oocystproduction. Vet Parasitol 149:147–157

    Article  CAS  PubMed  Google Scholar 

  • Mohamed WA, Koura EA, Rabee I, Hammam OA, Ismail HM (2019) The efficacy of chitosan nanoparticle alone versus conjugated with Nigella sativa (EL Baraka seed oil) against Cryptosporidium parvum in infected immunocompetent and immunosuppressed mice. W J Pharm Pharm Sci 8(10):139–161

    CAS  Google Scholar 

  • Moon HW, Schwartz A, Welch MJ, Mc-Cann PP, Runnels PL (1982) Experimental fecal transmission of human Cryptosporidia to pigs and attempted treatment with an ornithine decarboxylase inhibitor. Vet Pathol 19:700–707

    Article  CAS  PubMed  Google Scholar 

  • Mostafa NE, Abdel Hamed EF, Fawzy EM, Zalat RS, Rashed HE, Mohamed SY (2018) The new trend in the treatment of experimental cryptosporidiosis and the resulting intestinal dysplasia. Colorectal Cancer 7(4):1758–1958

    Article  Google Scholar 

  • Penido MLO, Nelson DL, Vieira LQ, Coelho PMZ (1994) Schistosomal activity of alkyl aminooctanethiosulfuric acids. Mem Inst Oswaldo Cruz 89(4):595–602

    Article  CAS  PubMed  Google Scholar 

  • Reese NC, Current WL, Ernst JV, Bailey WS (1982) Cryptosporidiosis of man and calf: a case report and results of experimental infections in mice and rats. Am J Trop Med Hyg 31:226–229

    Article  CAS  PubMed  Google Scholar 

  • Rehg JE, Hancock ML, Woodmansee DB (1988) Characterization of a dexamethasone treated rat model of cryptosporidial infection. J Infect Dis 158:1406–1407

    Article  CAS  PubMed  Google Scholar 

  • Ridley DS, Hawgood BC (1956) The value of formol–ether concentration of fecal cysts and ova. J Clin Pathol 9:74–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi S, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 26(1):64–70

    Google Scholar 

  • Rossignol JF, Ayoub A, Ayers MS (2001) Treatment of diarrhea caused by Cryptosporidium parvum: a prospective randomized, double-blind, placebocontrolled study of nitazoxanide. J Infect Dis 184:103–106

    Article  CAS  PubMed  Google Scholar 

  • Sadek G, El-Aswad B (2014) Role of COX-2 in pathogenesis of intestinal cryptosporidiosis and effect of some drugs on treatment of infection. Res J Parasitol 9:21–40

    Article  CAS  Google Scholar 

  • Sadek GS, Harba NM, Elrefai SA, Sharaf EL-Deen SA, Saleh MM (2018) Efficacy of praziquantel loaded chitosan nanoparticles against both adult and schistosomula stages of Schistosoma mansoni. J Egypt Soc Parasitol 48(3):629–638

    Article  Google Scholar 

  • Said DE, ElSamad LM, Gohar YM (2012) Validity of silver, chitosan and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111:545–554

    Article  CAS  PubMed  Google Scholar 

  • Sedighi F, Abbasali Pourkabir R, Maghsood A, Fallah M (2016) Comparison of therapeutic effect of anti-Cryptosporidium nano-nitazoxanide (NTZ) with free form of this drug in neonatal rat. Avicenna J Clin Med 23(2):134–140

    Google Scholar 

  • Siamak Moghadam-Kia MD, Victoria P, Werth MD (2010) Prevention and treatment of systemic glucocorticoid side effects. Int J Dermatol 49:239–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Somnuk J, Anupap T, Virote B (2011) Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean J Chem Eng 28(5):1247–1251

    Article  CAS  Google Scholar 

  • Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromol 2:765–772

    Article  CAS  Google Scholar 

  • Soufy H, Nadia M, Nasr S, El-Aziz T, Khalil F, Ahmed Y et al (2017) Effect of Egyptian propolis on cryptosporidiosis in immunosuppressed rats with special emphasis on oocysts shedding, leukogram, protein profile and ileum histopathology. Asian Pac J Trop Med 10:253–262

    Article  CAS  PubMed  Google Scholar 

  • Sponseller JK, Griffiths JK, Tziporia S (2014) The evolution of respiratory cryptosporidiosis, evidence for transmission by inhalation. Clin Microbiol Rev 27(3):575–586

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephens J, Cosyns M, Jones M, Hayward A (1999) Liver and bile duct pathology following Cryptosporidium parvum infection of immunodeficient mice. Hepatology 30:27–35

    Article  CAS  PubMed  Google Scholar 

  • Stojadinovic O, Lee B, Vouthounis C, Vukelic S, Pastar I, Blumenberg M et al (2007) Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal differentiation. J Biol Chem 282:4021–4034

    Article  CAS  PubMed  Google Scholar 

  • Theodos CM, Griffiths JK, D’Onfro J, Fairfield A, Tzipori S (1998) Efficacy of nitazoxanide against Cryptosporidium parvum in cell culture and in animal models. Antimicrob Agents Chemother 42:1959–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uner A, Inceboz T, Uysalci M, Gagci H (2003) Immune deficiency and cryptosporidiosis in rats. Turk J Vet Anim Sci 27:1187–1191

    Google Scholar 

  • Varum KM, Ottøy MH, Smidsrød O (1994) Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohydr Polym 25:65–70

    Article  CAS  Google Scholar 

  • Waters WR, Harp JA (1996) Cryptosporidium parvum infection in T-cell receptor (TCR)-alpha-and TCR-delta-deficient mice. Infect Immun 64:1854–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Rabab Sayed Zalat Professor of Medical Parasitology, Theodor Bilharz Research Institute, Cairo, Egypt, for providing Cryptosporidium oocysts. Special thanks to Hayam Elsaid Rashed professor of pathology, Zagazig University, for her assistance in interpretation of histopathology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was perfomed by Howayda Said Fouad Moawad, data collection and analysis were performed by Maha Saber Reda Badawey, Amira Abd El-Lateef Saleh Ali and Shereen Mahmoud Ibrahim. The study was finalized by Mohamed Hegab Abd El-Hady Hegab. The first draft of the manuscript was written by Shaimaa Elsayed Ashoush and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amira Abd El-Lateef Saleh Ali.

Ethics declarations

Conflict of interest

Authors state that they have no conflict of interest.

Ethical aspects

The study was accepted by the Research Ethics Committee, Faculty of Medicine, and Zagazig University. All techniques related to animal experimentation in this study met the International Guiding Principles for Biomedical Research Involving Animals as issued by the International Organizations of Medical Sciences.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moawad, H.S.F., Hegab, M.H.A.EH., Badawey, M.S.R. et al. Assessment of chitosan nanoparticles in improving the efficacy of nitazoxanide on cryptosporidiosis in immunosuppressed and immunocompetent murine models. J Parasit Dis 45, 606–619 (2021). https://doi.org/10.1007/s12639-020-01337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-020-01337-y

Keywords