Skip to main content

Advertisement

Log in

Chaperoning of asparagine repeat-containing proteins in Plasmodium falciparum

  • Review Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Plasmodium falciparum has the most adenine (A)- and thymine (T)-rich genome known to date, and 24–30% of the P. falciparum proteome contains asparagine (N) and glutamine (Q) residues. In general, asparagine repeats in proteins increase the propensity for aggregation, especially at elevated temperatures, which occur routinely in P. falciparum parasites during exoerythrocytic and erythrocytic developmental stages in a vertebrate host. The P. falciparum exported chaperone machinery is comprised of an exported PfHsp70-x protein and its co-chaperone PfHsp40-x1 in the host erythrocyte compartment, and PfHsp70-z and its co-chaperones in the parasite cytoplasm have been identified. In vitro assays reveal that these chaperone partners function in refolding of asparagine-rich polypeptides. The identification and chaperoning of exported poly-asparagine-containing proteins, and the biological roles and the protection mechanisms of P. falciparum during febrile conditions by the exported chaperone machinery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharya P, Kumar R, Tatu U (2007) Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 153(2):85–94

    Article  CAS  Google Scholar 

  • Alkhalil A, Cohn JV, Wagner MA, Cabrera JS, Rajapandi T, Desai SA (2004) Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood 104(13):4279–4286 (Epub 2004 Aug 19)

    Article  CAS  Google Scholar 

  • Behl A, Kumar V, Bisht A et al (2019) Cholesterol bound Plasmodium falciparum co-chaperone ‘PFA0660w’ complexes with major virulence factor ‘PfEMP1’ via chaperone ‘PfHsp70-x’. Sci Rep 9:2664

    Article  Google Scholar 

  • Botha M, Pesce ER, Blatch GL (2007) The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int J Biochem Cell Biol 39(10):1781–1803

    Article  CAS  Google Scholar 

  • Chakafana G, Zininga T, Shonhai A (2019) Comparative structure-function features of Hsp70s of Plasmodium falciparum and human origins. Biophys Rev 11:591–602. https://doi.org/10.1007/s12551-019-00563-w

    Article  CAS  Google Scholar 

  • Cohn JV, Alkhalil A, Wagner MA, Rajapandi T, Desai SA (2003) Extracellular lysines on the plasmodial surface anion channel involved in Na + exclusion. Mol Biochem Parasitol 132(1):27–34

    Article  CAS  Google Scholar 

  • Day J, Passecker A, Beck HP, Vakonakis I (2019) The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite. FASEB J 33(12):14611–14624. https://doi.org/10.1096/fj.201901741R

    Article  Google Scholar 

  • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25(11):2519–2528. https://doi.org/10.1038/sj.emboj.7601138

    Article  CAS  Google Scholar 

  • Eisenberg E, Greene LE (2007) Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis. Traffic 8(6):640–646 (Epub 2007 May 4)

    Article  CAS  Google Scholar 

  • Foley M, Tilley L (1998) Protein trafficking in malaria-infected erythrocytes. Int J Parasitol 11:1671–1680

    Article  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  Google Scholar 

  • Gormley JA, Howard RJ, Taraschi TF (1992) Trafficking of malarial proteins to the host cell cytoplasm and erythrocyte surface membrane involves multiple pathways. J Cell Biol 119(6):1481–1495

    Article  CAS  Google Scholar 

  • Halfmann R, Alberti S, Krishnan R, Lyle N, O’Donnell CW et al (2011) Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol Cell 43:72–84

    Article  CAS  Google Scholar 

  • Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez- Estraño C, Haldar K (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306(5703):1897–1898

    Article  Google Scholar 

  • Kriek N, Tilley L, Horrocks P, Pinches R, Elford BC, Ferguson DJ, Lingelbach K, Newbold CI (2003) Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol Microbiol 50(4):1215–1227

    Article  CAS  Google Scholar 

  • Külzer S, Rug M, Brinkmann K, Cannon P, Cowman A, Lingelbach K, Blatch GL, Maier AG, Przyborski JM (2010) Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol 12:1398–1420 [PubMed: 20482550]

    Article  Google Scholar 

  • Külzer S, Charnaud S, Dagan T, Riedel J, Mandal P, Pesce ER, Blatch GL, Crabb BS, Gilson PR, Przyborski JM (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14:1784–1795 [PubMed: 22925632]

    Article  Google Scholar 

  • Lopez N, Aron R, Craig EA (2003) Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ +]. Mol Biol Cell 14(3):1172–1181

    Article  CAS  Google Scholar 

  • Mabate B, Zininga T, Ramatsui L et al (2018) Structural and biochemical characterization of Plasmodium falciparum Hsp70-x reveals functional versatility of its C-terminal EEVN motif. Proteins 86:1189–1201. https://doi.org/10.1002/prot.25600

    Article  CAS  Google Scholar 

  • Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933

    Article  CAS  Google Scholar 

  • Marti M, Baum J, Rug M, Tilley L, Cowman AF (2005) Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. J Cell Biol 171:587–592

    Article  CAS  Google Scholar 

  • Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 97(22):11910–11915

    Article  CAS  Google Scholar 

  • Muralidharan V, Goldberg DE (2013) Asparagine repeats in Plasmodium falciparum proteins: good for nothing? PLoS Pathog 9(8):e1003488. https://doi.org/10.1371/journal.ppat.1003488

    Article  CAS  Google Scholar 

  • Muralidharan V, Oksman A, Pal P, Lindquist S, Goldberg DE (2012) Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 3:1310

    Article  Google Scholar 

  • Oakley MS, Kumar S, Anantharaman V, Zheng H, Mahajan B, Haynes JD, Moch JK, Fairhurst R, McCutchan TF, Aravind L (2007) Molecular factors and biochemical pathways induced by febrile temperature in intraerythrocytic Plasmodium falciparum parasites. Infect Immun 75(4):2012–2025

    Article  CAS  Google Scholar 

  • Pallarès I, de Groot NS, Iglesias V, Sant’Anna R, Biosca A, Fernàndez-Busquets X, Ventura S (2018) Discovering putative prion-like proteins in Plasmodium falciparum: a computational and experimental analysis. Front Microbiol 9:1737. https://doi.org/10.3389/fmicb.2018.01737

    Article  Google Scholar 

  • Papakrivos J, Newbold CI, Lingelbach K (2005) A potential novel mechanism for the insertion of a membrane protein revealed by a biochemical analysis of the Plasmodium falciparum cytoadherence molecule PfEMP-1. Mol Microbiol 55:1272–1284

    Article  CAS  Google Scholar 

  • Przyborski JM, Diehl M, Blatch GL (2015) Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle. Front Mol Biosci 2:34. https://doi.org/10.3389/fmolb.2015.00034

    Article  CAS  Google Scholar 

  • Rajapandi T, Wu C, Eisenberg E, Greene L (1998) Characterization of D10S and K71E mutants of human cytosolic hsp70. Biochemistry 19(37(20)):7244–7250

    Article  Google Scholar 

  • Rajapandi T, Greene LE, Eisenberg E (2000) The molecular chaperones Hsp90 and Hsc70 are both necessary and sufficient to activate hormone binding by glucocorticoid receptor. J Biol Chem 275(29):22597–22604

    Article  CAS  Google Scholar 

  • Sargeant TJ, Marti M, Caler E, Carlton JM, Simpson K, Speed TP, Cowman AF (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol 7(2):R12

    Article  Google Scholar 

  • Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271(5255):1519–1526

    Article  CAS  Google Scholar 

  • Singh GP, Chandra BR, Bhattacharya A, Akhouri RR, Singh SK, Sharma A (2004) Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Mol Biochem Parasitol 137(2):307–319

    Article  CAS  Google Scholar 

  • Sondheimer N, Lopez N, Craig EA, Lindquist S (2001) The role of Sis1 in the maintenance of the [RNQ +] prion. EMBO J 20(10):2435–2442

    Article  CAS  Google Scholar 

  • Spielmann T, Hawthorne PL, Dixon MW, Hannemann M, Klotz K, Kemp DJ, Klonis N, Tilley L, Trenholme KR, Gardiner DL (2006) A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol Biol Cell 17(8):3613–3624

    Article  CAS  Google Scholar 

  • Taraschi TF, Trelka D, Martinez S, Schneider T, O’Donnell ME (2001) Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Int J Parasitol 12:1381–1391

    Article  Google Scholar 

  • van Ooij C, Haldar K (2007) Protein export from Plasmodium parasites. Cell Microbiol 9(3):573–582 (Epub 2007 Jan 11)

    Article  Google Scholar 

  • Zininga T, Achilonu I, Hoppe H, Prinsloo E, Dirr HW, Shonhai A (2016) Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion. Cell Stress Chaperones 21(3):499–513. https://doi.org/10.1007/s12192-016-0678-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Paul Gass, Coppin State University for critical reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

TR conceived and devised the study, collected data and analyzed results, made interpretations, collected references, wrote the manuscript.

Corresponding author

Correspondence to Thavamani Rajapandi.

Ethics declarations

Conflict of interest

The author reports no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapandi, T. Chaperoning of asparagine repeat-containing proteins in Plasmodium falciparum. J Parasit Dis 44, 687–693 (2020). https://doi.org/10.1007/s12639-020-01251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-020-01251-3

Keywords

Navigation