Skip to main content

Advertisement

Log in

A systematic evidence review of the effect of climate change on malaria in Iran

  • Review Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Climate is an effective factor in the ecological structure which plays an important role in control and outbreak of the diseases caused by biological factors like malaria. With regard to the occurring climatic change, this study aimed to review the effects of climate change on malaria in Iran. In this systematic review, Cochrane, PubMed and ScienceDirect (as international databases), SID and Magiran as Persian databases were investigated through MESH keywords including climate change, global warming, malaria, Anopheles, and Iran. The related articles were screened and finally their results were extracted using data extraction sheets. Totally 41 papers were resulted through databases searching process. Finally 14 papers which met inclusion criteria were included in data extraction stage. The findings indicated that Anopheles mosquitoes are present at least in 115 places in Iran; they are compatible with climatic zones of Iran. Malaria and it’s vectors are affected by climate change. Temperature, precipitation, relative humidity, wind intensity and direction are the most important climatic factors affecting the growth and proliferation of Anopheles, Plasmodium and the prevalence of malaria. The transmission of malaria in Iran is associated with the climatic factors of temperature, rainfall, and humidity. Therefore, with regard to the occurring climatic change, the incidence of the disease may also change which needs to be taken into consideration while planning of malaria control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abeku TA, Van Oortmarssen GJ, Borsboom G, De Vlas SJ, Habbema J (2003) Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications. Acta Trop 87:331–340

    Article  PubMed  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • Babaie J, Fatemi F, Ardalan A, Mohammadi H, Soroush M (2014) Communicable diseases surveillance system in east Azerbaijan earthquake: strengths and weaknesses. PLoS Curr 6

  • Babaie J, Ardalan A, Vatandoost H, Goya MM, Akbarisari A (2015a) Performance assessment of communicable disease surveillance in disasters: a systematic review. PLoS Curr 7

  • Babaie J, Ardalan A, Vatandoost H, Goya MM, Sari AA (2015b) Performance assessment of a communicable disease surveillance system in response to the twin earthquakes of east azerbaijan. Disaster Med Public Health Prep 9:367–373

    Article  PubMed  Google Scholar 

  • Barati M, Keshavarz-Valian H, Habibi-Nokhandan M, Raeisi A, Faraji L, Salahi-Moghaddam A (2012) Spatial outline of malaria transmission in Iran. Asian Pac J Trop Med 5:789–795

    Article  PubMed  Google Scholar 

  • Barati M, Salahi Mogadam A, Azizi M (2014) Assessment of malaria status in Iran. Paramed Sci Mil Health 2:9–13

    Google Scholar 

  • Barati M, Khoshdel A, Salahi-Moghaddam A (2015) An overview and mapping of anopheles in Iran. Paramed Sci Mil Health 10:9–16

    Google Scholar 

  • Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM (2017) World malaria report: time to acknowledge plasmodium knowlesi malaria. Malar J 16:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayoh M, Lindsay S (2003) Effect of temperature on the development of the aquatic stages of anopheles gambiae sensu stricto (diptera: culicidae). Bull Entomol Res 93:375–381

    Article  PubMed  CAS  Google Scholar 

  • Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON (2013) The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE 8:e79276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON (2017) The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. Open Sci 4:160969

    Google Scholar 

  • Bi P, Tong S, Donald K, Parton KA, Ni J (2003) Climatic variables and transmission of malaria: a 12-year data analysis in Shuchen County, China. Public Health Rep 118:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouma M, Van Der Kaay H (1994) Epidemic malaria in India and the El Nino southern oscillation. Lancet 344:1638–1639

    Article  PubMed  CAS  Google Scholar 

  • Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, Stenlund H, Martens P, Lloyd SJ (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci 111:3286–3291

    Article  PubMed  CAS  Google Scholar 

  • Change IC (2007) The fourth assessment report of the intergovernmental panel on climate change, Geneva, Switzerland

  • Epstein PR (2000) Is global warming harmful to health? Sci Am 283:50–57

    Article  PubMed  CAS  Google Scholar 

  • Epstein PR (2001) Climate change and emerging infectious diseases. Microbes Infect 3:747–754

    Article  PubMed  CAS  Google Scholar 

  • Epstein PR, Diaz HF, Elias S, Grabherr G, Graham NE, Martens WJ, Mosley-Thompson E, Susskind J (1998) Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Am Meteor Soc 79:409–417

    Article  Google Scholar 

  • Floor WM (2004) Public health in Qajar Iran. Mage Publishers, Washington

    Google Scholar 

  • Gao H-W, Wang L-P, Liang S, Liu Y-X, Tong S-L, Wang J-J, Li Y-P, Wang X-F, Yang H, Ma J-Q (2012) Change in rainfall drives malaria re-emergence in Anhui Province, China. PLoS One 7:e43686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haghdoost A (2004) Assessment of seasonal and climatic effects on the incidence and species composition of malaria by using GIS methods. University of London, London

    Google Scholar 

  • Hales S, De Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834

    Article  PubMed  Google Scholar 

  • Halimi M, Delavari M, Takhtardeshir A (2013) Survey of climatic condition of Malaria disease outbreak in Iran using GIS. J Sch Public Health Inst Public Health Res 10:41–52

    Google Scholar 

  • Halimi M, Farajzadeh M, Delavari M, Bagheri H (2014) Climatic Survey of Malaria Incidence in Iran during 1971–2005. J Sch Public Health Inst Public Health Res 12:1–11

    Article  Google Scholar 

  • Halimi M, Zarei Cheghabalehi Z, Jafari Modrek M (2016) Impact of El Niño Southern Oscillation (ENSO) on Annual Malaria Occurrence in Iran. Iran J Health Environ 9:369–382

    Google Scholar 

  • Holakouie Naieni K, Nadim A, Moradi G, Teimori S, Rashidian H, Kandi Kaleh M (2012) Malaria epidemiology in Iran from 1941 to 2006. J Sch Public Health Inst Public Health Res 10:77–90

    Google Scholar 

  • Houghton J, Firor J (1995) Global warming: the complete briefing. Cambridge University Press, Cambridge

    Google Scholar 

  • Huang F, Zhou S, Zhang S, Wang H, Tang L (2011) Temporal correlation analysis between malaria and meteorological factors in Motuo County, Tibet. Malar J 10:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Jadgal KM, Zareban I, Alizadeh siouki H, Sepehrvand N (2014) The Epidemiological features of Malaria in Konarak, Iran (2007–2011). J Torbat Heydariyeh University Med Sci 2:54–60

    Google Scholar 

  • Kim Y-M, Park J-W, Cheong H-K (2012) Estimated effect of climatic variables on the transmission of Plasmodium vivax malaria in the Republic of Korea. Environ Health Perspect 120:1314

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovats R, Campbell-Lendrum D, Mcmichel A, Woodward A, Cox JSH (2001) Early effects of climate change: do they include changes in vector-borne disease? Philos Trans R Soc Lond B Biol Sci 356:1057–1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A (2003) El Niño and health. Lancet 362:1481–1489

    Article  PubMed  Google Scholar 

  • Kuhn KG, Campbell-Lendrum DH, Armstrong B, Davies CR (2003) Malaria in Britain: past, present, and future. Proc Natl Acad Sci 100:9997–10001

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Reddy NNR (2014) Factors affecting malaria disease transmission and incidence: a special focous on Visakhapatnam district. Int J Sci Res 5:312–317

    Google Scholar 

  • Lardeux FJ, Tejerina RH, Quispe V, Chavez TK (2008) A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J 7:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML (1999) Highland malaria in Uganda: prospective analysis of an epidemic associated with El Nino. Trans R Soc Trop Med Hyg 93:480–487

    Article  PubMed  CAS  Google Scholar 

  • Lindsay SW, Bødker R, Malima R, Msangeni HA, Kisinza W (2000) Effect of 1997–98 EI Niño on highland malaria in Tanzania. Lancet 355:989–990

    Article  PubMed  CAS  Google Scholar 

  • Mabaso ML, Sharp B, Lengeler C (2004) Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying. Tropical Med Int Health 9:846–856

    Article  Google Scholar 

  • Martens W, Niessen LW, Rotmans J, Jetten TH, Mcmichael AJ (1995) Potential impact of global climate change on malaria risk. Environ Health Perspect 103:458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mills JN, Gage KL, Khan AS (2010) Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect 118:1507

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadkhani M, Khanjani N, Bakhtiari B, Sheikhzadeh K (2016) The relation between climatic factors and malaria incidence in Kerman, South East of Iran. Parasite Epidemiol Control 1:205–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Moradi A, Akhtarkavan M, Ghiasvand J, Akhtarkavan H (2008) Assessment of direct adverse impacts of climate change on Iran. earth 11:16

    Google Scholar 

  • Mozafari GA, Mostofialmammaleki R (2012) Bioclimatic analysis of the malaria disease outbreak in Chabahar city. Geographic space. 12:21–37

    Google Scholar 

  • Mozaffari GA, Hashemi A, Safarpour F (2011) The effect of southern oscillation on malaria disease in Iran with emphasis on the town of Chabahar. J Arid Reg Geogr Stud 1:53–65

    Google Scholar 

  • Ostfeld RS, Brunner JL (2015) Climate change and Ixodes tick-borne diseases of humans. Philos Trans R Soc B 370:20140051

    Article  Google Scholar 

  • Parry M, Canziani O, Palutikof J, Van Der Linden PJ, Hanson CE (2007) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    Article  PubMed  CAS  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    Article  PubMed  CAS  Google Scholar 

  • Raeisi A, Nikpoor F, Ranjbar Kahkha M, Faraji L (2009) The trend of Malaria in IR Iran from 2002 to 2007. Hakim Res J 12:35–41

    Google Scholar 

  • Rahimi D, Morianzadeh J (2016) Analysis of the impact climate and ENSO on the malaria in Kerman province. J Nat Environ Hazards 5:17–30

    Google Scholar 

  • Rodó X, Pascual M, Doblas-Reyes FJ, Gershunov A, Stone DA, Giorgi F, Hudson PJ, Kinter J, Rodríguez-Arias M-À, Stenseth NC (2013) Climate change and infectious diseases: Can we meet the needs for better prediction? Clim Change 118:625–640

    Article  Google Scholar 

  • Salahimoghadam A, Khoshdel A, Barati M, Sedaghat MM (2014) An overview and mapping of Malaria and its vectors in Iran. Bimon J Hormozgan Univ Med Sci 18:428–440

    Google Scholar 

  • Salahi-Moghaddam A, Khoshdel A, Dalaei H, Pakdad K, Nutifafa GG, Sedaghat MM (2017) Spatial changes in the distribution of malaria vectors during the past 5 decades in Iran. Acta Trop 166:45–53

    Article  PubMed  CAS  Google Scholar 

  • Shemshad K, Oshaghi M, Yaghoobi-Ershadi M, Vatandoost H, Abaie M, Zarei Z, Jedari M (2007) Morphological and molecular characteristics of malaria vector Anopheles superpictus populations in Iran. Tehran Univ Med J TUMS Publ 65:6–13

    CAS  Google Scholar 

  • Smith KR, Corvalán CF, Kjellstrom T (1999) How much global ill health is attributable to environmental factors? Epidemiol Baltim 10:573–584

    Article  CAS  Google Scholar 

  • Soleimani Ahmadi M, Vatandoost H, Shaeghi M, Raeisi A, Abedi F, Eshraghian MR, Aghamolaei T, Madani AH, Safari R, Jamshidi M, Alimorad A (2012) Effects of educational intervention on long-lasting insecticidal nets use in a malarious area, southeast Iran. Acta Med Iran 50:279–287

    PubMed  Google Scholar 

  • Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J (2004) Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar J 3:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Trenberth KE (2001) Climate variability and global warming. Science 293:48–49

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Overland JE (2004) Detecting Arctic climate change using Köppen climate classification. Clim Change 67:43–62

    Article  Google Scholar 

  • Wangdi K, Singhasivanon P, Silawan T, Lawpoolsri S, White NJ, Kaewkungwal J (2010) Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan. Malar J 9:251

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2005) Using climate to predict infectious disease epidemics/Communicable Diseases Surveillance and Response, Protection of the Human Environment, Roll Back Malaria

  • WHO (2015) World malaria report 2015. World Health Organization

  • WHO (2017) World malaria report 2017. World Health Organization

  • Wu X, Tian H, Zhou S, Chen L, Xu B (2014) Impact of global change on transmission of human infectious diseases. Sci China Earth Sci 57:189–203

    Article  Google Scholar 

  • Wu X, Lu Y, Zhou S, Chen L, Xu B (2016) Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int 86:14–23

    Article  PubMed  Google Scholar 

  • Yeryan M, Basseri HR, Hanafi-Bojd AA, Raeisi A, Edalat H, Safari R (2016) Bio-ecology of malaria vectors in an endemic area, Southeast of Iran. Asian Pac J Trop Med 9:32–38

    Article  PubMed  Google Scholar 

  • Zhang Y, Bi P, Hiller JE (2010) Meteorological variables and malaria in a Chinese temperate city: a twenty-year time-series data analysis. Environ Int 36:439–445

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Javad Sadat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaie, J., Barati, M., Azizi, M. et al. A systematic evidence review of the effect of climate change on malaria in Iran. J Parasit Dis 42, 331–340 (2018). https://doi.org/10.1007/s12639-018-1017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-018-1017-8

Keywords

Navigation