Journal of Parasitic Diseases

, Volume 39, Issue 4, pp 663–672 | Cite as

Herbal extract targets in Leishmania tropica

  • Bassim I. Mohammad
  • Maani N. Al Shammary
  • Roaa H. Abdul Mageed
  • Nasser Ghaly Yousif
Original Article


The present study aims to investigate the effect of some herbal extract such as phenolic compounds on the viability of Leishmania tropica promastigotes in vitro. Four tested chemical agents (caffeic acid (CA), ferulic acid (FA), syringic acid (SA) and 4-hydroxybenzoic acid (4-HBA)) were used in this study. The viability of Leishmania tropica promastigotes was investigated under five different concentrations (10, 15, 20, 25 and 30 mg/ml) of each agent after (72 h). CA was the most active agent on the promastigotes viability after 72 h exposure to 30 mg/ml concentration so that the parasiticidal effect reach (53 × 104) promastigote/ml. FA is the second agent in parasiticidal effect that parasiticidal effect reach to (50 × 104 promastigote/ml) at a concentration (30 mg/ml), 4-HBA is the third agent in parasiticidal effect that reach to (48 × 104 promastigote/ml) at a concentration (30 mg/ml), SA is the weakest agent in parasiticidal activity that reach to (44 × 104 promastigote/ml) at a concentration (30 mg/ml). It can be concluded that (CA, FA, SA and 4-HBA) possess acidal effect on the Leishmania tropica promastigotes in vitro.


Leishmania tropica promastigotes Phenolic compounds Parasiticidal effect Sodium stibogluconate 


  1. Akendengue B, Ngou-Milama E, Laurens A, Hocquemiller R (1999) Recent advances in the fight against leishmaniasis with natural products. Parasite 6(3–8):20Google Scholar
  2. Aziz NH, Farag SE, Mousa LAA, Abu-Zaid MA (1998) Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93:43–54PubMedGoogle Scholar
  3. Berman JD (1996) Treatment of New World cutaneous and mucosal leishmaniases. Clin Dermatol 14:519–522CrossRefPubMedGoogle Scholar
  4. Berman JD (1997) Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis 24:684–703CrossRefPubMedGoogle Scholar
  5. Boelaert M, Le-ray D, Van-Der SP (2002) How better drugs could change kala-azar control. Lessons from a cost-effectiveness analysis. Trop Med Int Health 7:955–959CrossRefPubMedGoogle Scholar
  6. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253CrossRefPubMedGoogle Scholar
  7. Carrio J, Riera C, Gallego M, Ribera E, Portus M (2001) In vitro susceptibility of Leishmania infantum to meglumine antimoniate in isolates from repeated leishmaniasis episodes in HIV-coinfected patients. J Antimicrob Chemother 47:120–121CrossRefPubMedGoogle Scholar
  8. Cho J, Moon J, Seong K, Park K (1998) Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from Rice Hull. Biosci Biotechnol Biochem 62(11):2273–2276CrossRefPubMedGoogle Scholar
  9. Chong KP, Stephen R, Markus A (2009) In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma Boninense. JAS 1(2):8Google Scholar
  10. Cowan MM (1999) Plant products as antimicrobial agent. Clin Microbiol Rev 12:564PubMedCentralPubMedGoogle Scholar
  11. Darrell R, Gary J, Robert L, Dawn M, Robert A, Keith R et al (2002) Mosby’s drug consult, section III, drug information. Copywrite © 2002, Mosby Inc, p 674Google Scholar
  12. Dawson RMC, Elliot DC, Elliot WH, Jons KM (1969) Data for biochemical research, 2nd edn. Clareden Press, Oxford, p 508Google Scholar
  13. De Armas R, Santiago R, Legaz ME, Vicente C (2007) Levels of phenolic compounds and enzyme activity can be used to screen for resistance of sugarcane to smut (Ustilago scitaminea). Australas Plant Pathol 36(1):32–38CrossRefGoogle Scholar
  14. Desjeux P (1996) Leishmaniasis: public health aspects and control. Clin Dermatol 14:417–423CrossRefPubMedGoogle Scholar
  15. Ephros M, Waldman E, Zilberstein D (1997) Pentostam induces resistance to antimony and the preservative chlorocresol in Leishmania donovani promastigotes and axenically grown amastigotes. Antimicrob Agents Chemother 41:1064–1068PubMedCentralPubMedGoogle Scholar
  16. Felaih HI, Alshammary MN, Mohammad BI (2011) Effect of phenolic compounds and terpenoid on the viability of Echinococcus granulosus protoscolices: a comparative in vitro study. Master thesis. Al-Qadissiyah University, College of MedicineGoogle Scholar
  17. Fournet A, Barrios AA (1994) Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. J Ethnopharmacol 41:19–37CrossRefPubMedGoogle Scholar
  18. Fournet A, Munoz V (2002) Natural products as trypanocidal, antileishmanial and antimalarial drugs. Curr Top Med Chem 2:1215–1237CrossRefPubMedGoogle Scholar
  19. Fournet A, Ferreira ME, Rojas-De-Arias A, Torres-De-Ortiz S, Fuentes S, Nakayama H, Schinini A, Hocquemiller R (1996) In vivo efficacy of oral and intralesional administration of 2-substituted quinolines in experimental treatment of world cutaneous leishmaniasis caused by Leishmania amazonensis. Antimicrob Agents Chemother 40:2447–2451PubMedCentralPubMedGoogle Scholar
  20. Gardjeva PA, Dimitrova SZ, Kostadinov ID, Murdjeva MD, Peyehe LP (2007) A study of chemical composition and antimicrobial activity of Bulgarian propolis. Folia Med 49:63–69Google Scholar
  21. Geoffrey CK (1996) Medicinal plants and the control of protozoal disease, with particular reference malaria. Trans R Soc Trop Med Hyg 90:605–609CrossRefGoogle Scholar
  22. Harrison HF, Peterson JK, Snook ME, Bohac JR, Jackson DM (2003) Quantity and potential biological activity of caffeic acid in sweet potato storage root periderm. J Agric Food Chem 51(10):2943–2948CrossRefPubMedGoogle Scholar
  23. Helander IM, Alakomi H-L, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, Von Wright A (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46:3590–3595CrossRefGoogle Scholar
  24. Ibrahim ME, Hag-Ali M, El-Hassan AM, Theander TG, Kharazmi A (1994) Leishmania resistant to sodium stibogluconate: drug-associated macrophage-dependent killing. Parasitol Res 80:569–574CrossRefPubMedGoogle Scholar
  25. Ismaiel AA, Pierson MD (1990) Inhibition of germination, out growth and vegetative growth of clostridium botulinum by spice oils. J Food Prot 53:755–758Google Scholar
  26. Kagan IG, Norman L (1970) Manual of clinical microbiology. American Society for Microbiology, Washington, pp 453–486Google Scholar
  27. Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829CrossRefPubMedGoogle Scholar
  28. Khalid FA, Abdalla NM, Mohomed HO, Toum AM, Magzoub MMA, Ali MS (2005) In vitro assessment of anti-cutaneous leishmaniasis activity of some sudanese plants. Türkiye Parazitol Derg 29(1):3–6PubMedGoogle Scholar
  29. Killick-Kendrick R (1990) Phlebotomine vectors of the leishmaniases. Med Vet Entomol 4(1):1–24CrossRefPubMedGoogle Scholar
  30. Kim YS, Hwang CS, Shin DH (2005) Volatile constituents from the leaves of Polygonum cuspidatum S. et Z. and their anti-bacterial activities. Food Microbiol 22:139–144CrossRefGoogle Scholar
  31. Kontoghiorghes GJ, Jackson MJ, Lunec J (1986) In vitro screening of iron chelators using models of free radical damage. Free Radic Res Commun 2:115–124CrossRefPubMedGoogle Scholar
  32. Kozlowska M, Krzywanski Z (1994) The possible role of phenolic compounds in red raspberry resistance to Didymella applanata (Niessl) Sacc. Acta Hortic 381:671–674CrossRefGoogle Scholar
  33. Lambert RJW, Skandamis PN, Coote P, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462CrossRefPubMedGoogle Scholar
  34. Lira R, Sundar S, Makharia A, Kenney R, Gam A, Sacks D (1999) Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis 180:564–567CrossRefPubMedGoogle Scholar
  35. Maddox CE, Laur LM, Tian Li (2010) Antibacterial activity of phenolic compounds against the pathogen of Xylella fastidiosa. Curr Microb 60(1):53–58CrossRefGoogle Scholar
  36. Mobarak HA (2008). Isolation and cultivation of cutaneous leishmania parasite by using different cultures media. Master thesis. University of Kufa, College of Medicine, p 22Google Scholar
  37. Najim RA, Sharquie KE, Farjo IB (1998) Zinc sulfate in the treatment of cutaneous leishmaniasis an in vitro and animal study. Men Inst Oswaldo Ciuz 93:831–837CrossRefGoogle Scholar
  38. Natalia G (2013) Planktonics or biofilms infections? AJBM 1(1):6–8Google Scholar
  39. Nychas GJE (1995) Natural antimicrobials from plants. In: Gould GW (ed) New methods of food preservation. Blackie Academic, London, pp 58–89CrossRefGoogle Scholar
  40. Osman OF, Kager PA, Oskam L (2000) Leishmaniasis in the Sudan: a literature review with emphasis on clinical aspects. Trop Med Int Health 5:553–571CrossRefPubMedGoogle Scholar
  41. Prashanth D, Asha MK, Amit A (2001) Antibacterial activity of Punica granatum. Fitoterapia 72:171–173CrossRefPubMedGoogle Scholar
  42. Raccach M (1984) The antimicrobial activity of phenolic antioxidants in food: a review. J Food Saf 6:141–170CrossRefGoogle Scholar
  43. Ranga VS, Julia LH (1997) Immunology method manual, chapter 29.2, vol. 4. In: HIV growth, measurement and neutralization, pp 1963–1964Google Scholar
  44. Ready PD (2008) Leishmaniasis emergence and climate change. In: de la Roque S (ed) Climate change: the impact on the epidemiology and control of animal diseases, vol 27. Revue Scientifique et Technique (International Office Epizootics), Paris, pp 399–412Google Scholar
  45. Roberts MTM (2006) Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. Br Med Bull 75(76):115CrossRefPubMedGoogle Scholar
  46. Sikkema J, De Bont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  47. Smid EJ, Gorris LGM (1999) Natural antimicrobials for food preservation. In: Rahman MS (ed) Handbook of food preservation. Marcel Dekker, New York, pp 285–308Google Scholar
  48. Steiger RF, Steiger E (1977) Cultivation of Leishmania donovani and Leishmania braziliensis in defined media: nutritional requirements. J. Protozool. 24(3):441–443CrossRefGoogle Scholar
  49. Takahashi M, Fuchino H, Sekita S, Satake M (2004) In vitro leishmanicidal activity of some scarce natural products. Phytother Res 18:573–578CrossRefPubMedGoogle Scholar
  50. Taniguchi M, Yano Y, Tada E, Ikenishi K, Ol S, Haraguchi H, Hashimoto K, Kubo I (1988) Mode of action of polygodial: an antifungal sesquiterpene dialdehyde. Agric Biol Chem 52:1409–1414CrossRefGoogle Scholar
  51. Thakur CP (2000) Socio-economics of visceral leishmaniasis in Bihar (India). Trans R Soc Trop Med Hyg 94:156–157CrossRefPubMedGoogle Scholar
  52. Ultee A, Kets EPW, Smid EJ (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65:4606–4610PubMedCentralPubMedGoogle Scholar
  53. Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications, OxfordGoogle Scholar
  54. Weniger B, Robledo S, Arango GJ, Deharo E, Aragon R, Munoz V, Callapa J, Lobstein A, Anton R (2001) Antiprotozoal activities of Colombian plants. J Ethnopharmacol 78:193–200CrossRefPubMedGoogle Scholar
  55. WHO (1990) Control of the leishmaniases. Report of WHO expert committee, technical series, no 793Google Scholar
  56. WHO (2007) Sixtieth world health assembly. Provisional agenda item. 12, 3, pp 1–5Google Scholar
  57. Winkelhausen ER, Pospiech R, Laufenberg G (2005) Antifungal activity of phenolic compounds extracted from dried olive pomace. Bull Chem Technol Maced 24(1):41–46Google Scholar
  58. Wright CW, Phillipson JD (1990) Natural products and the development of selective antiprotozoal drugs. Phytother Res 4:127–139CrossRefGoogle Scholar

Copyright information

© Indian Society for Parasitology 2014

Authors and Affiliations

  • Bassim I. Mohammad
    • 1
  • Maani N. Al Shammary
    • 3
  • Roaa H. Abdul Mageed
    • 4
  • Nasser Ghaly Yousif
    • 1
    • 2
  1. 1.College of PharmacyUniversity of Al QadisiyahAl DiwaniyahIraq
  2. 2.Department of Surgery and InflammationColorado UniversityAuroraUSA
  3. 3.College of MedicineUniversity of Al QadisiyahAl DiwaniyahIraq
  4. 4.Ministry of agriculture, Al Diwaniyah directorateAl DiwaniyahIraq

Personalised recommendations