Skip to main content

Advertisement

Log in

Therapeutic switching in leishmania chemotherapy: a distinct approach towards unsatisfied treatment needs

  • Review Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Current drugs for the treatment of visceral leishmaniasis are inadequate. No novel compound is in the pipeline. Since economic returns on developing a new drug for neglected disease, leishmaniasis is so low that therapeutic switching represents the only realistic strategy. It refers to “alternative drug use” discoveries which differ from the original intent of the drug. Amphotericin B, paromomycin, miltefosine and many other drugs are very successful examples of “new drugs from old”. This article reviews the discovery, growth and current status of these drugs and concluded that the potential of this approach (therapeutic switching) may use in the development of new antileishmanials in future also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://www.dndi.org/overview-dndi/objectives.html

References

  • Al-Abdely HM, Graybill JR, Loebenberg D, Melby PC (1999) Efficacy of the triazole SCH 56592 against L. amazonensis and L. donovani in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother 43:2910–2914

    PubMed  CAS  Google Scholar 

  • Alrajhi AA, Ibrahim EA, De Vol EB, Khairat M, Faris RM, Maguire JH (2002) Fluconazole for the treatment of cutaneous leishmaniasis caused by Leishmania major. N Engl J Med 346:891–895

    Article  PubMed  CAS  Google Scholar 

  • Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev 3:673–683

    Article  CAS  Google Scholar 

  • Beach DH, Goad LJ, Holz GG Jr (1998) Effects of antimycotic azoles on growth and sterol biosynthesis of leishmania promastigotes. Mol Biochem Parasitol 31:149–162

    Article  Google Scholar 

  • Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 46:828–833

    Article  PubMed  CAS  Google Scholar 

  • Berman JD (1981) Activity of imidazoles against Leishmania tropica in human macrophage cultures. Am J Trop Med Hyg 30:566–569

    PubMed  CAS  Google Scholar 

  • Berman JD, Goad LJ, Beach DH, Holz GG Jr (1981) Effects of ketoconazole on sterol biosynthesis by L. mexicana amastigotes in murine macrophage tumor cells. Mol Biochem Parasitol 20:85–92

    Article  Google Scholar 

  • Berman JD, Badaro R, Thakur CP, Wasunna KM, Behbehani K, Davidson R, Kuzoe F, Pang L, Weerasuriya K, Bryceson AD (1998) Efficacy and safety of liposomal amphotericin B (AmBisome) for visceral leishmaniasis in endemic developing countries. Bull World Health Organ 76:25–32

    PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Sinha PK, Sundar S (2007) Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. J Infect Dis 196(4):591–598

    Article  PubMed  CAS  Google Scholar 

  • Buffet PA, Garin YJ, Sulahian A, Nassar N, Derouin F (1996) Therapeutic effect of reference antileishmanial agents in murine visceral leishmaniasis due to Leishmania infantum. Ann Trop Med Parasitol 90:295–302

    PubMed  CAS  Google Scholar 

  • Castanys-Munoz E, P′erez-Victoria JM, Gamarro F, Castanys S (2008) Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother 52:3573–3579

    Article  PubMed  CAS  Google Scholar 

  • Chunge CN, Owate J, Pamba HO, Donno L (1990) Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Trans Royal Soc Trop Med Hyg 84:221–225

    Article  CAS  Google Scholar 

  • Colakoglu M, Yaylali G, Colakoglu NY, Yalmaz M (2006) Successful treatment of visceral leishmania with fluconazole and allupurinol in a patient with renal failure. Scand J Infect Dis 38:208–210

    Article  PubMed  CAS  Google Scholar 

  • Croft S, Neal R, Pendergast W, Chan JH (1987) The activity of alkyl phosphocholines and related derivates against Leishmania donovani. Biochem Pharmacol 36:2633–2636

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Seifert K, Duchene M (2003) Antiprotozoal activities of phospholipid analogues. Mol Biochem Parasitol 126:165–172

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Seifert K, Yardley V (2006) Current scenario of drug development for leishmaniasis. Indian J Med Res 123:399–410

    PubMed  CAS  Google Scholar 

  • den Boer ML, Alvar J, Davidson RN, Ritmeijer K, Balasegaram M (2009) Developments in the treatment of visceral leishmaniasis. Expert Opin Emerg Drugs 14:395–410

    Article  Google Scholar 

  • Di Giorgio C, Faraut-Gambarelli F, Imbert A, Minodier P, Gasquet M, Dumon H (1999) Flow cytometric assessment of amphotericin B susceptibility in Leishmania infantum isolates from patients with visceral leishmaniasis. J Antimicrob Chemother 44:71–76

    Article  PubMed  CAS  Google Scholar 

  • DiMasi JA (2001) New drug development in the United States from 1963 to 1999. Clin Pharmacol Therapeut 69:286–296

    Article  CAS  Google Scholar 

  • DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econom 22:151–185

    Article  Google Scholar 

  • Durand R, Paul M, Pratlong F, Rivollet D, Dubreuil-Lemaire DL, Houin R, Astier A, Deniau M (1998) Leishmania infantum: lack of parasite resistance to amphotericin B in a clinically resistant visceral leishmaniasis. Antimicrob Agents Chemother 42:2141–2143

    PubMed  CAS  Google Scholar 

  • Escobar P, Yardley V, Croft SL (2001) Activities of hexadecylphosphocholine (miltefosine), AmBisome, and sodium stibogluconate (pentostam) against Leishmania donovani in immunodeficient SCID mice. Antimicrob Agents Chemother 45:1872–1875

    Google Scholar 

  • Ghannoum MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517

    Google Scholar 

  • Espuelas S, Legrand P, Loiseau PM, Bories C, Barratt G, Irachel JM (2000) In vitro reversion of amphotericin B resistance in Leishmania donovani by poloxamer 188. Antimicrob Agents Chemother 44:2190–2192

    Article  PubMed  CAS  Google Scholar 

  • Fong D, Chan MM, Rodriguez R, Gately LJ, Berman JD, Grogl M (1994) Paromomycin resistance in Leishmania tropica: lack of correlation with mutation in the small subunit ribosomal RNA gene. Am J Trop Med Hyg 51:758–766

    PubMed  CAS  Google Scholar 

  • Gangneux JP, Sulahian A, Garin YJ, Derouin F (1997) Efficacy of aminosidine administered alone or in combination with meglumine antimoniate for the treatment of experimental visceral leishmaniasis caused by Leishmania infantum. J Antimicrob Chemother 40:287–289

    Article  PubMed  CAS  Google Scholar 

  • Gebre-Hiwot A, Tadesse G, Croft SL, Frommel D (1992) An in vitro model for screening antileishmanial drugs, the human leukaemia monocyte cell line, THP-1. Acta Trop 51:237–245

    Article  PubMed  CAS  Google Scholar 

  • Griensven J, Balasegaram M, Meheus F, Alvar J, Lynen L, Boelaert M (2010) Combination therapy for visceral leishmaniasis. Lancet Infect Dis 10:184–194

    Article  PubMed  Google Scholar 

  • Halim MA, Alfurayh O, Kalin ME, Dammas S, Al-Eisa A, Damanhouri G (1993) Successful treatment of visceral leishmaniasis with allopurinol plus ketoconazole in a renal transplant recipient after the occurrence of pancreatitis due to stibogluconate. Clin Infect Dis 16:397–399

    Article  PubMed  CAS  Google Scholar 

  • Herrmann H, Gercken G (1982) Metabolism of 1-O-[1′-14C]octadecyl-sn-glycerol in Leishmania donovani promastigotes. Ether lipid synthesis and degradation of the ether bond. Mol Biochem Parasitol 5:65–76

    Article  PubMed  CAS  Google Scholar 

  • Homsi Y, Makdisi G (2010) Leishmaniasis: A forgotten disease among neglected people. Internet J Health 11:2

    Google Scholar 

  • Hueso M, Bover J, Seron D, Gil-vernet S, Rufí G, Alsina J, Grinyó JM (1999) The renal transplant patient with visceral leishmaniasis who could not tolerate meglumine antimoniate cure with ketoconazole and allopurinol. Nephrol Dial Transplant 14:2941

    Article  PubMed  CAS  Google Scholar 

  • Jha BB (1998) Fluconazole in visceral leishmaniasis. Indian Pediatr 35:268–269

    PubMed  CAS  Google Scholar 

  • Kellina OI (1961) A study of experimental cutaneous leishmaniasis in white mice [in Russian]. Med Parasitol (Mosk) 30:684–691

    CAS  Google Scholar 

  • Kuhlencord A, Maniera T, Eibl H, Unger C (1992) Hexadecylphosphocholine, oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother 36:1630–1634

    PubMed  CAS  Google Scholar 

  • Llorente S, Gimeno L, Navarro MJ, Moreno S, Rodriguez-Girones M (2000) Therapy of visceral leishmaniasis in renal transplant recipients intolerant to pentavalent antimonials. Transplantation 70:800

    Article  PubMed  CAS  Google Scholar 

  • Lux H, Heise N, Klenner T, Hart D, Opperdoes F (2000) Ether-lipid (alkyl-phospholipid analog) metabolism and the mechanism of action of ether lipid analogs in Leishmania. Mol Biochem Parasitol 111:1–14

    Article  PubMed  CAS  Google Scholar 

  • Maarouf M, Lawrence F, Brown S, Robert-Gero M (1997) Biochemical alterations in paromomycin-treated Leishmania donovani promastigotes. Parasitol Res 83:198–202

    Article  PubMed  CAS  Google Scholar 

  • Maarouf M, Adeline MT, Solignac M, Vautrin D, Robert-Gero M (1998) Development and characterization of paromomycin-resistant Leishmania donovani promastigotes. Parasite 5:167–173

    PubMed  CAS  Google Scholar 

  • Maltezou HC (2008) Visceral leishmaniasis: advances in treatment. Recent Pat Antiinfect Drug Discov 3:192–198

    Article  PubMed  CAS  Google Scholar 

  • Maltezou HC (2010) Drug resistance in visceral leishmaniasis. J Biomed Biotech 617521:8

    Google Scholar 

  • Martin MB, Grimley JS, Lewis JC, Heath HT, Bailey BN, Kendrick H, Yardley V et al (2001) Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J Med Chem 44:909–916

  • Melaku Y, Collin SM, Keus K, Gatluak F, Ritmeijer K, Davidson RN (2007) Treatment of kala-azar in southern Sudan using a 17 day regimen of sodium stibogluconate combined with paromomycin, a retrospective comparison with 30 day sodium stibogluconate monotherapy. Am J Trop Med Hyg 77:89–94

    PubMed  CAS  Google Scholar 

  • Meyerhoff A (1999) US food and drug administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis 28:42–48

    Article  PubMed  CAS  Google Scholar 

  • Murray H (2000) Suppression of post-treatment recurrence of experimental visceral leishmaniasis in T-cell-deficient mice by oral miltefosine. Antimicrob Agents Chemother 44:3235–3236

    Article  PubMed  CAS  Google Scholar 

  • Mussi SV, Fernandes AP, Ferreira LAM (2007) Comparative study of the efficacy of formulations containing fluconazole or paromomycin for topical treatment of infections by Leishmania (Leishmania) major and Leishmania (Leishmania) amazonensis. Parasitol Res 100:1221–1226

    Article  PubMed  Google Scholar 

  • Navin TR, Arana BA, Arana FE, Berman JD, Chajon JF (1992) Placebo-controlled clinical trial of sodium stibogluconate (pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. J Infect Dis 165:528–534

    Article  PubMed  CAS  Google Scholar 

  • Neal RA (1968) The effect of antibiotics of the neomycin group on experimental cutaneous leishmaniasis. Ann Trop Med Parasitol 62:54–62

    PubMed  CAS  Google Scholar 

  • Neal RA, Croft SL (1984) An in vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. J Antimicrob Chemother 14:463–475

    Article  PubMed  CAS  Google Scholar 

  • Neal RA, Allen S, McCoy N, Olliaro P, Croft SL (1995) The sensitivity of Leishmania species to aminosidine. J Antimicrob Chemother 35:577–584

    Article  PubMed  CAS  Google Scholar 

  • Oldfield E, Croft SL, Martin MB, Yardley V, Docampo R (2001) New approaches to chemotherapy using farnesylpyrophosphate synthase inhibitors: interscience conference on antimicrobial agents and chemotherapy. Abstr Intersci Conf Antimicrob Agents Chemother Intersci Conf Antimicrob Agents Chemother, University of Illinois, Urbana, Dec 16–19

  • Ortiz-Gómez A, Jiménez C, Estévez AM, Carrero-Lérida J, Ruiz-Pérez LM, González-Pacanowska D (2006) Farnesyl diphosphate synthase is a cytosolic enzyme in Leishmania major promastigotes and its overexpression confers resistance to risedronate. Eukaryot Cell 5:1057–1064

    Article  PubMed  Google Scholar 

  • P′erez-Victoria JM, Cortes-Selva F, Parodi-Talice A et al (2006) Combination of suboptimal doses of inhibitors targeting different domains of LtrMDR1 efficiently overcomes resistance of Leishmania spp. to miltefosine by inhibiting drug efflux. Antimicrob Agents Chemother 50:3102–3110

    Article  Google Scholar 

  • Pandey BD, Pandey K, Kaneko O, Yanagi T, Hirayama K (2009) Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg 80:580–582

    PubMed  Google Scholar 

  • Pape LP (2008) Development of new antileishmanial drugs-current knowledge and future prospects. J Enzym Inhib Med Chem 23:708–718

    Article  Google Scholar 

  • Paris C, Loiseau P, Bories C, Breard J (2004) Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 48:852–859

    Article  PubMed  CAS  Google Scholar 

  • Paterson R (2002) Pamidronate next on list as potential cure for leishmaniasis. Lancet Infect Dis 2:515

    Google Scholar 

  • Pérez-Victoria FJ, Sanchez-Canete MP, Seifert K et al (2006) Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resist Updates 9:26–39

    Article  Google Scholar 

  • Poli A, Sozzi S, Guidi G, Bandinelli P, Mancianti F (1997) Comparison of aminosidine (paromomycin) and sodium stibogluconate for treatment of canine leishmaniasis. Vet Parasitol 71:263–271

    Article  PubMed  CAS  Google Scholar 

  • Rakotomanga M, Saint-Pierre-Chazalet M, Loiseau PM (2005) Alteration of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions. Antimicrob Agents Chemother 49:2677–2686

    Article  PubMed  CAS  Google Scholar 

  • Rangel H, Dagger F, Hernandez A, Liendo A, Urbina JA (1996) Naturally azole-resistant Leishmania braziliensis promastigotes are rendered susceptible in the presence of terbinafine: comparative study with azole-susceptible Leishmania mexicana promastigotes. Antimicrob Agents Chemother 40:2785–2791

    Google Scholar 

  • Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126:129–142

    Google Scholar 

  • Rodriguez N, Bailey BN, Martin MB, Oldfield E, Urbina JA, Docampo R (2002) Radical cure of experimental cutaneous leishmaniasis by the bisphosphonate pamidronate. J Infect Dis 186:138–140

    Google Scholar 

  • Scott JA, Davidson RN, Moody AH, Grant HR, Felmingham D, Scott GM et al (1992) Aminosidine (paromomycin) in the treatment of leishmaniasis imported into the United Kingdom. Trans Royal Soc Trop Med Hyg 86:617–619

    Article  CAS  Google Scholar 

  • Seaman J, Pryce D, Sondorp HE, Moody A, Bryceson AD, Davidson RN (1993) Epidemic visceral leishmaniasis in Sudan, a randomized trial of aminosidine plus sodium stibogluconate versus sodium stibogluconate alone. J Infect Dis 168:715–720

    Article  PubMed  CAS  Google Scholar 

  • Seifert K, Croft SL (2006) In vitro and in vivo interactions between miltefosine and other antileishmanial drugs. Antimicrob Agents Chemother 50:73–79

    Article  PubMed  CAS  Google Scholar 

  • Seifert K, Pérez-Victoria FJ, Stettler M, Sanchez-Canete MP, Castanys S, Gamarro F, Croft SL (2007) Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents 30:229–235

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Sivakumarm R (2004) Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10:307–315

    Article  PubMed  Google Scholar 

  • Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 6:849–854

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, Chatterjee M (2006) Visceral leishmaniasis—scurrent therapeutic modalities. Indian J Med Res 123:345–352

    PubMed  CAS  Google Scholar 

  • Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis, clinical evidence for informed clinical risk management. Therapeut Clin Risk Manag 3:733–740

    CAS  Google Scholar 

  • Sundar S, Singh VP, Agrawal NK, Gibbs DL, Murray HW (1996) Treatment of kala-azar with oral fluconazole. Lancet 348:614

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, Rosenkaimer F, Makharia MK, Goyal AK, Mandal AK, Voss A, Hilgard P, Murray HW (1998) Trial of miltefosine for visceral leishmaniasis. Lancet 352:1821–1823

    Article  PubMed  CAS  Google Scholar 

  • Teklemariam S, Hiwot AG, Frommel D, Miko TK, Ganlov G, Bryceson A (1994) Aminosidine and its combination with sodium stibogluconate in the treatment of diffuse cutaneous leishmaniasis caused by Leishmania aethiopica. Trans Royal Soc Trop Med Hyg 88:334–339

    Article  CAS  Google Scholar 

  • Thakur CP, Olliaro P, Gothoskar S, Bhowmick S, Choudhury BK, Prasad S, Kumar M, Verma BB (1992) Treatment of visceral leishmaniasis (kala-azar) with aminosidine (paromomycin)-antimonial combinations, a pilot study in Bihar, India. Trans Royal Soc Trop Med Hyg 86:615–616

    Article  CAS  Google Scholar 

  • Thakur CP, Kanyok TP, Pandey AK, Sinha GP, Zaniewski AE, Houlihan HH, Olliaro P (2000) A prospective randomized, comparative, open-label trial of the safety and efficacy of paromomycin (aminosidine) plus sodium stibogluconate versus sodium stibogluconate alone for the treatment of visceral leishmaniasis. Trans Royal Soc Trop Med Hyg 94:429–431

    Article  CAS  Google Scholar 

  • Torrus D, Boix V, Massa B, Portilla J, Perez-Mateo M (1996) Fluconazole plus allopurinol in treatment of visceral leishmaniasis. J Antimicrob Chemother 37:1042–1043

    Article  PubMed  CAS  Google Scholar 

  • Vexenat JA, Olliaro PL, Fonseca de Castro JA, Cavalcante R, Furtado Campos JH, Tavares JP, Miles MA (1998) Clinical recovery and limited cure in canine visceral leishmaniasis treated with aminosidine (paromomycin). Am J Trop Med Hyg 58:448–453

    PubMed  CAS  Google Scholar 

  • Wadhone P, Maiti M, Agarwal R, Kamat V, Martin S, Saha B (2009) Miltefosine promotes IFN-γ-dominated anti-leishmanial immune response. J Immunol 182:7146–7154

    Google Scholar 

  • Wieder T, Reutter W, Orfanos C, Geilen C (1999) Mechanisms of action of phospholipid analogs as anticancer compounds. Prog Lipid Res 38:249–259

    Article  PubMed  CAS  Google Scholar 

  • Williams D, Mullen AB, Baillie AJ, Carter KC (1998) Comparison of the efficacy of free and non-ionic-surfactant vesicular formulations of paromomycin in a murine model of visceral leishmaniasis. J Pharmaceut Pharmacol 50:1351–1356

    Article  CAS  Google Scholar 

  • Yardley V, Khan AA, Martin MB, Slifer TR, Araujo FG, Moreno SN, Docampo R, Croft SL, Oldfield E (2002) In vivo activity of the farnesyl pyrophosphate synthase inhibitors alendronate, pamidronate, and risedronate against Leishmania donovani and Toxoplasma gondii. Antimicrob Agents Chemother 46:929

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakya, N., Bajpai, P. & Gupta, S. Therapeutic switching in leishmania chemotherapy: a distinct approach towards unsatisfied treatment needs. J Parasit Dis 35, 104–112 (2011). https://doi.org/10.1007/s12639-011-0040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-011-0040-9

Keywords

Navigation