Advertisement

Journal of Parasitic Diseases

, Volume 33, Issue 1–2, pp 48–53 | Cite as

Anthelmintic efficacy of ethanolic shoot extract of Alpinia nigra on tegumental enzymes of Fasciolopsis buski, a giant intestinal parasite

  • Bishnupada Roy
  • Ananta Swargiary
Original Article

Abstract

Ethanolic shoot extract of Alpinia nigra, a traditionally used anthelmintic medicinal plant among the Tripuri tribes of north-east India, was tested in vitro to determine its anthelmintic efficacy in gastrointestinal trematode Fasciolopsis buski, using alterations in the activity of vital tegumental enzymes viz. acid phosphatase (AcPase), alkaline phosphatase (AlkPase) and adenosine triphosphatase (ATPase). Live adult F. buski treated in vitro with different concentrations of the plant extract showed significant decline in the visible stain histochemically and enzyme activities. Quantitatively, the total enzyme activity of AcPase, AlkPase and ATPase was found to be reduced by 45, 41 and 43%, respectively compared to the control. The reference drug, praziquantel also showed more or less similar effect like that of the plant extract. The results suggest that the tegumental enzymes of the parasite may be an important target of action for active component(s) of A. nigra, which appears to act transtegumentally.

Keywords

Alpinia nigra Anthelmintic Fasciolopsis buski Tegumental enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Agarwal A, Tekwani BL, Shukla OP, Ghatak S (1990) Effect of anthelmintics and phenothiazines on adenosine 5′-triphosphatases of filarial parasite Setaria cervi. Indian J Exp Biol, 28:245–248PubMedGoogle Scholar
  2. Aggarwal R, Sanyal SN, Khera S (1992) Effect of anthelmintics on phosphatases in Ascaridia galli. Acta Vet Hungarica, 40:243–249Google Scholar
  3. Chopra AK, Sharma MK, Upadhyay VP (1991) Effect of ayurvedic anthelmintics on phosphatase activity of Paramphistomum cervi. Indian J Parasitol, 43:65–69Google Scholar
  4. Colam JB (1971) Studies on gut ultrastructure and digestive physiology in Cyathostoma lari (Nematoda: Strongylida). Parasitology, 62:273–283CrossRefPubMedGoogle Scholar
  5. Delabre-Defayolle I, Sarciron ME, Audin P, Gabrion C, Duniez T, Paris J, et al. (1989) Echinococcus multilocularis metacestodes: biochemical and ultrastructural investigations on the effect of isatin (2–3 indoline dione) in vivo. J Antimicrob Agents Chemother, 23:237–245CrossRefGoogle Scholar
  6. Das B, Tandon V (2007) In vitro testing of anthelmintic efficacy of Flemingia vestita (Fabaceae) on carbohydrate metabolism in Rallietina echinobothrida. Methods, 42:330–338CrossRefPubMedGoogle Scholar
  7. Fallon PG, Smith P, Nicholls T, Modha J, Doenhoff MJ (1994) Praziquantel-induced exposure of Schistosoma mansoni alkaline phosphatase: drug-antibody synergy which acts preferentially against female worms. Parasite Immunol, 16:529–535CrossRefPubMedGoogle Scholar
  8. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem, 66:375–400Google Scholar
  9. Kaplan C (1957) Methods in Enzymology, Vol. III, Academic Press, New YorkGoogle Scholar
  10. Kwak KH, Kim CH (1996) Characteristics of alkaline and acid phosphatase in Spirometra erinacei. Korean J Parasitol, 34:69–77CrossRefPubMedGoogle Scholar
  11. Lalchhandama K, Roy B, Dutta BK (2007) In vitro anthelmintic activity of Acacia oxyphylla: Changes in the levels of trace elements and activities of the tegumental enzymes of the cestodes, Raillietina echinobothrida. Pharmacologyonline, 2:307–317Google Scholar
  12. Lalchhandama K, Roy B, Dutta BK (2008) Effects of Millettia pachycarpa on the trace metals and tegumental enzymes of Raillietina echinobothrida. Pharm Magaz, 4:254–261Google Scholar
  13. Kar PK, Tandon V (2004) Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): Alterations in the activity of the enzymes associated with the tegumental and gastrodermal interfaces of the trematode, Fasciolopsis buski. J Parasit Dis, 28:45–56Google Scholar
  14. Leon P, Monteoliva M, Sanchez-Moreno M (1989) Isoenzyme patterns of phosphatases and esterases in Fasciola hepatica and Dicrocoelium dendriticum. Vet Parasit, 30:297–304CrossRefGoogle Scholar
  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biological Chem, 193:265–275Google Scholar
  16. Meaney M, Fairweather I, Brennan GP, Ramasamy P, Subramanian PB (2002) Fasciola gigantica: tegumental surface alterations following treatment in vitro with the sulphoxide metabolite of triclabendazole. Parasitol Res, 88(4):315–325CrossRefPubMedGoogle Scholar
  17. Meaney M, Fairweather I, Brennan GP, Forbes AB (2004) Transmission electron microscope study of the ultrastructural changes induced in the tegument and gut of Fasciola hepatica following in vivo drug treatment with clorsulon. Parasitol Res, 92(4):232–241CrossRefPubMedGoogle Scholar
  18. McKinstry B, Fairweather I, Brennan GP, Forbes AB (2003) Fasciola hepatica: tegumental surface alterations following treatment in vivo and in vitro with nitroxynil (Trodax). Parasitol Res, 91:251–263CrossRefPubMedGoogle Scholar
  19. Pal P, Tandon V (1998) Anthelmintic efficacy of Flemingia vestita (Leguminoceae): Genistein-induced alterations in the activity of tegumental enzymes in the cestodes, Raillietina echinobothrida. Parasitology International, 47:233–243CrossRefGoogle Scholar
  20. Pappas PW (1991) Activation and inhibition of the brushborder membrane-bound alkaline phosphatase activity of Hymenolepis diminuta (Cestoda) by divalent cations. Parasitology, 102(1):141–145CrossRefPubMedGoogle Scholar
  21. Park CJ, Seo BS (1968) Studies on phosphatase activity in some parasitic helminths. Korean J Parasitol, 5(3):115–124CrossRefGoogle Scholar
  22. Pearse AGE (1968) Histochemistry: Theoretical and Applied, Churchill Livingstone, Edinburgh, London, New YorkGoogle Scholar
  23. Plummer DT (1988) An Introduction to Practical Biochemistry. Third Edition, Tata McGraw-Hill Publishing Comp Ltd., New Delhi. pp 236–238Google Scholar
  24. Poljakova-Krusteva O, Mizinska-Boevska Y, Stojtsova S (1983) A cytochemical study of some phosphatases in the tegument of two cestode species. Helminthol, 16:64–67Google Scholar
  25. Rivera N, Ibarra F, Zepeda A, Fortoul T, Hernandez A, Castillo R, Canto G (2004) Tegumental surface changes in adult Fasciola hepatica following treatment in vitro and in vivo with an experimental fasciolicide. Parasitol Res, 93:283–286CrossRefPubMedGoogle Scholar
  26. Roy B, Dasgupta S, Tandon V (2009) Ultrastructural observations on Fasciolopsis buski and its alterations caused by shoot extract of Alpinia nigra. Micro Res Tech, 72:61–66CrossRefGoogle Scholar
  27. Roy B, Tandon V (1996) Effect of root tuber extract of Flemingia vestita, a leguminous plant, on Artyfechinostomum surfrartyfex and Fasciolopsis buski: a scanning electron microscopy study. Parasitol Res, 82:248–252CrossRefPubMedGoogle Scholar
  28. Roy B, Tandon V (1999) Flukicidal activity of Alpinia nigra (Zingiberaceae) against the trematode, Fasciolopsis buski, in humans. Biomedical Lett, 60:23–29Google Scholar
  29. Roy TK (1982) Histochemical studies on Raillietina (Raillietina) johri (Cestoda: Davaineidae). I. Nonspecific and specific phosphatases. J Helminthol, 53:45–49CrossRefGoogle Scholar
  30. Sharma PN (1976) Histochemical studies on the distribution of alkaline phosphatase, acid Phosphatase, 5′-nucleotidase and ATPase in various reproductive tissues of certain digenetic trematodes. Parasitol Res, 49:223–231Google Scholar
  31. Thompson DP, Ho NFH, Sims SM, Geary TG (1993) Mechanistic approaches to quantitate anthelmintic absorption by gastrointestinal nematodes. Parasitol Today, 9:31–35CrossRefPubMedGoogle Scholar
  32. Thompson DP, Geary TG (1995) The structure and function of helminth surfaces. In: Marr JJ, Muller M, eds. Biochemistry and Molecular Biology of Parasites. London, UK, Academic Press, 203–232CrossRefGoogle Scholar
  33. Vinaud MC, Ferreire CS, Lino Junior Rde S, Bezerra JC (2009) Taenia crassiceps: fatty acid oxidation and alternative energy source in in vitro cysticerci exposed to anthelmintic drugs. Exp Parasitol, 122:208–211CrossRefPubMedGoogle Scholar
  34. Xiao HS, Guo J, Chollet J, Wu J, Tanner M, Utzinger J (2004) Effect of artemether on Schistosoma japonicum: doseefficacy relationship, and changes in worm morphology and histopathology. Chinese J Parasitol Parasit Dis, 22:148–153Google Scholar
  35. Zaidi SIM, Pandey RN, Kidwai AM, Krishnamurti CR (1981) A rapid method for preparation of sarcolemma from frog skeletal muscle. J Biosci, 3:293–302CrossRefGoogle Scholar

Copyright information

© Indian Society for Parasitology 2009

Authors and Affiliations

  1. 1.Department of ZoologyNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations