Skip to main content
Log in

Tätowierungen

Körperkult mit toxischen Langzeitfolgen

  • fortbildung
  • Published:
ästhetische dermatologie & kosmetologie Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

1

© Damian Gretka / stock.adobe.com

Literatur

  1. IMAS international (2016) Tätowierung in Österreich 2016: wenn Individualisierung unter die Haut geht. http://www.imas.at/images/imas-report/2016/17_Taetowierungen_in_Oesterreich.pdf. Zugegriffen am 7.8.2018

  2. Schreiver I et al. Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin. Sci Rep. 2017; 7: 11395.

  3. Laux P et al. A medical-toxicological view of tattooing. Lancet. 2016; 387: 395-402

  4. Lehner K et al. Black tattoos entail substantial uptake of genotoxicpolycyclic aromatic hydrocarbons (PAH) in human skin and regional lymph nodes. PLoS One. 2014; 9: e92787

  5. Jacobsen NR, Clausen PA. Carbon black nanoparticles and other problematic constituents of black ink and their potential to harm tattooed humans. Curr Probl Dermatol. 2015; 48: 170-5

  6. Regensburger J et al. Tattoo inks contain polycyclic aromatic hydrocarbons that additionally generate deleterious singlet oxygen. Exp Dermatol. 2010; 19: e275-81

  7. Eghbali K et al. Determination of heavy metals in tattoo ink. Biosci, Biotechnol Res Asia. 2014; 11: 941-6

  8. Grant CA et al. Tattoo ink nanoparticles in skin tissue and fibroblasts. Beilstein J Nanotechnol. 2015; 6: 1183-91

  9. Klügl I et al. Incidence of health problems associated with tattooed skin: a nation-wide survey in German-speaking countries. Dermatology. 2010; 221: 43-50

  10. Boström CE et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002; 110: 451-88

  11. Davila DR et al. Human T cells are highly sensitive to suppression of mitogenesis by polycyclic aromatic hydrocarbons and this effect is differentially reversed by alpha-naphthoflavone. Toxicol Appl Pharmacol. 1996; 139: 333-41

  12. van Grevenynghe J et al. Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages. J Immunol. 2003; 170: 2374-81

  13. Burchiel SW, Luster MI. Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin Immunol. 2001; 98: 2-10

  14. Tsien A et al. The organic component of diesel exhaust particles and phenanthrene, a major polyaromatic hydrocarbon constituent, enhances IgE production by IgE-secreting EBV-transformed human B cells in vitro. Toxicol Appl Pharmacol. 1997; 142: 256-63

  15. Nel AE et al. Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune system. J Allergy Clin Immunol. 1998; 102: 539-54

  16. Lehner K et al. The decrease of pigment concentration in red tattooed skin years after tattooing. J Eur Acad Dermatol Venereol. 2011; 25: 1340-5

  17. Sepehri M et al. Search for internal cancers in mice tattooed with inks of high contents of potential carcinogens: a one-year autopsy study of red and black tattoo inks banned in the market. Dermatology. 2017; 233: 94-9

  18. Solhaug A et al. Polycyclic aromatic hydrocarbons induce both apoptotic and anti-apoptotic signals in Hepa1c1c7 cells. Carcinogenesis. 2004; 25: 809-19

  19. Penning TM et al. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol. 1999; 12: 1-18

  20. Cheong WF et al. A review of the optical properties of biological tissues. IEEE J Quantum Electron. 1990; 26: 2166-85

  21. Maisch T et al. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci USA. 2007; 104: 7223-8

  22. Mann ER et al. Review: skin and the immune system. J Clin Exp Dermatol Res. 2012; https://doi.org/10.4172/2155-9554.S2-003

  23. Nestle FO et al. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009; 9: 679-91

  24. Bassi A et al. Tattoo-associated skin reaction: the importance of an early diagnosis and proper treatment. Biomed Res Int. 2014; 2014: 354608

  25. Kluger N, Koljonen V. Tattoos, inks, and cancer. Lancet Oncol. 2012; 13: e161-8

  26. Kluger N. Issues with keratoacanthoma, pseudoepitheliomatous hyperplasia and squamous cell carcinoma within tattoos: a clinical point of view. J Cutan Pathol. 2010; 37: 812-3

  27. Engel E et al. Establishment of an extraction method for the recovery of tattoo pigments from human skin using HPLC diode array detector technology. Anal Chem. 2006; 78: 6440-7

  28. Kluger N et al. Skin cancers arising in tattoos: coincidental or not? Dermatology. 2008; 217: 219-21

  29. Bocca B et al. Size and metal composition characterization of nano- and microparticles in tattoo inks by a combination of analytical techniques. J Anal At Spectrom. 2017; 32: 616-28

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Kronberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronberger, L., Überall, F. Körperkult mit toxischen Langzeitfolgen . ästhet dermatol kosmetol 12, 20–25 (2020). https://doi.org/10.1007/s12634-020-1057-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12634-020-1057-9

Navigation