Skip to main content
Log in

Tuning of Tetrahedral-to-Octahedral Layers Ion Content Ratio in Clay Minerals to Enhance the Radiation-Shielding Properties: A Case Study of Muscovite Clay Mineral

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Radiation attenuation and absorption play a crucial role in various applications, such as nuclear power generation, medical imaging, and space exploration. Clay minerals, with their unique layered structure, offer potential as radiation shielding materials due to their exceptional properties and tunability. The systematic tuning of the tetrahedral-to-octahedral-layers ion content (T:O ratio) in muscovite, a variant of mica, by substitution of Al by Fe and investigation of its impact on radiation shielding is the primary goal of this study. The linear attenuation coefficient (LAC) and mass attenuation coefficient (MAC) were calculated for a range of photon energies for different clay minerals, revealing that the MAC values depend on the incident photon energy, crystalline form and chemical composition. The sequential order for the MAC values at E = 50 keV as follows: (Clay, MAC (cm2.g−1)): (mica, 0.357), (talc, 0.307), (kaolinite, 0.297), (montmorillonite, 0.286). The LAC values also demonstrated variations with the same order in relation to incoming radiation, where mica (with unit-cell volume 943.6 A˚3, crystal density 3.02 g.cm−3, atomic packing fraction 0.226) exhibited the highest values. Also, the results indicate that muscovite exhibits improving shielding properties as the ion content T:O ratio is increased from 20:0 to 20:10, corresponding to an increase in Fe3+ ions at the expense of Al3+ ions in the octahedral voids. Its MAC values at 0.015 MeV were increased from 7.146 to 10.403 cm2.g−1 as the T:O substitution ratio increased from 20:0 to 20:10 in the layered clay. The findings highlight the importance of optimizing the T:O substitution ratio in clay minerals for radiation-shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chilton AB, Shultis JK, Faw R (1984) Principle of Radiation Shielding, 1st edn. Prentic-Halle, Englewood Cliffs

    Google Scholar 

  2. Murray HH (2006) Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskitesepiolite, and Common Clays, 1st edn. Elsevier Science, Amsterdam, The Netherlands

  3. Bergaya F, Lagaly G (2013) Handbook of Clay Science, vol 5, 2nd edn, Elsevier Science, Amsterdam, The Netherlands

  4. Wang H, Sun Y, Chu J, Wang X, Zhang M (2020) Crystalline structure variation within phlogopite, muscovite and talc under 0–1000 kGy γ ray irradiation: a clear dependence on intrinsic characteristic. Appl Clay Sci 187:105475. https://doi.org/10.1016/j.clay.2020.105475

  5. Wang H, Sun Y, Chu J, Wang X, Zhang M (2020) Appl Clay Sci 187:105475

    Article  CAS  Google Scholar 

  6. Allard T, Calas G (2009) Appl Clay Sci 43:143–149

    Article  CAS  Google Scholar 

  7. Allard T, Balan E, Calas G, Fourdrin C, Morichon E, Sorieul S (2012) Nuclear Inst Methods Phy Res B 277:112–120

    Article  CAS  Google Scholar 

  8. Huang X, Li J, Xiaoya Su, Fang K, Wang Z, Liu L, Wang H, Yang C, Xiaoguang W (2021) RSC Adv 11:21870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Halliwell E, Couch C, Begum R, Li W, Maqbool M (2021) Colloids Surf A Physicochem Eng Asp 622:126646

    Article  CAS  Google Scholar 

  10. Li G, Sui X, Qin X, Ma Y, Wang K, Wang Q (2016) Phys Lett A 380:3500–3504

    Article  CAS  Google Scholar 

  11. Chai P, Abramchuk M, Shatruk M (2016) Crystals 6:165

    Article  Google Scholar 

  12. Khattari ZY, Alsaif NAM, Shams MS et al (2023) Silicon 15:4897–4907

    Article  CAS  Google Scholar 

  13. Couch C, Halliwell E, Begum R, Ali G, Khan T, Maqbool M (2022) J Appl Cryst 55:615–620

    Article  CAS  Google Scholar 

  14. Khattari ZY (2024) Opt Mater 149:115000

    Article  CAS  Google Scholar 

  15. Khattari ZY (2024) Silicon 16:1753–1764

    Article  CAS  Google Scholar 

  16. Khattari ZY (2024) Radiat Phys Chem 219:111660

    Article  CAS  Google Scholar 

  17. Khattari ZY (2024) Opt Mater 150:115197

    Article  CAS  Google Scholar 

  18. Al-Omari S, Afaneh F, Alsaif NAM, Al-Ghamdi H, Rammah YS, Khattari ZY (2024) Radiat Phys Chem 217:111527

    Article  CAS  Google Scholar 

  19. Shaaban SM, Afaneh F, Elsad RA et al (2024) Silicon 16:407–414

    Article  CAS  Google Scholar 

  20. Al-Omari S, Shaaban SM, Rammah YS et al (2023) Silicon 15:7865–7873

    Article  CAS  Google Scholar 

  21. Khattari ZY (2024) J Am Cerm Soc 107:3761–3768

    Article  CAS  Google Scholar 

  22. Al-Omari S, Afaneh F, Elsad RA, Rammah YS, Khattari ZY (2024) Radiat Phys Chem 215:111377

    Article  CAS  Google Scholar 

  23. Khattari ZY (2024). Silicon. https://doi.org/10.1007/s12633-024-02904-1

    Article  Google Scholar 

  24. Khattari ZY (2024). Silicon. https://doi.org/10.1007/s12633-024-02945-6

    Article  Google Scholar 

  25. ANSI/ANS-6.4.3; W2001 (1991) Geometric Progression Gamma-Ray Buildup Factor Coefficients, American Nuclear Society, LaGrange Park, Illinois

  26. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R et al (2010) XCOM: Photon cross section database, version 1.5. http://physics.nist.gov/xcom. Accessed 10 Mar 2024

  27. Şakar E, Özpolat ÖF, Alım B, Sayyed MI, Kurudirek M (2020) Radiat Phys Chem 166:108496

    Article  Google Scholar 

  28. Kittel C (2005) Introduction to Solid State Physics, 8th edn. John Wiley & Sons, Hoboken

    Google Scholar 

  29. Ashcroft NW, Mermin ND (1976) Solid State Physics. Saunders College Publishing, Rochester

    Google Scholar 

  30. Wells AF (1984) Structural Inorganic Chemistry. Clarendon Press, Oxford (ISBN 0-19-855370-6)

    Google Scholar 

  31. Pauling L (1940) The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  32. Fuochi P, Corda U, Lavalle M, Kovacs A, Baranyai M, Mejri A, Farah K (2009) Dosimetric properties of gamma and electron-irradiated commercial window glasses. Nukleonika 54:39–43

    CAS  Google Scholar 

  33. Bootjomchai C, Laopaiboon R (2014) Thermoluminescence dosimetric properties and effective atomic numbers of window glass. Nucl Inst Methods Phys Res B 323:42–48

    Article  CAS  Google Scholar 

  34. Wei W, Hong Y, Yuan Y, Li Y, Cui K, Zhang T, Jia X, Qin W, Wu X (2023) J Alloys Compd 938:168672

    Article  CAS  Google Scholar 

  35. Sakher E, Smili B, Bououdina M, Bellucci S (2022) Nanomaterials 12:2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank The Hashemite University for financial support.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Feras Afaneh: Review & editing the first draft of the manuscript.

Saleh Al-Omari: Assisted in data collection & analysis and rearranging the manuscript first draft.

Ragab A. Elsad: Assisted in data analysis and drawing the figures.

Yasser Rammah: Review & editing, and resources.

Ziad Y. Khattari: Conceptualization, review & editing, and Finalized the last version of the manuscript.

* All authors read and approved the final manuscript.

Corresponding author

Correspondence to Z. Y. Khattari.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afaneh, F., Al-Omari, S., Elsad, R.A. et al. Tuning of Tetrahedral-to-Octahedral Layers Ion Content Ratio in Clay Minerals to Enhance the Radiation-Shielding Properties: A Case Study of Muscovite Clay Mineral. Silicon (2024). https://doi.org/10.1007/s12633-024-03017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-03017-5

Keywords

Navigation