Skip to main content
Log in

Perlite-Catalyzed Chemical Fixation of Carbon Dioxide Under Solvent-free and Low-pressure CO2 Conditions

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We introduce expanded perlite as a new, inexpensive, multi-catalytic active site and effective catalyst for the synthesis of cyclic carbonate under perfectly mild, low pressure of CO2 and solvent-free conditions. Expanded perlite efficiently catalyzes the CO2 fixation and achieves high conversion of the main products. The catalyst and products were analyzed using FTIR, X-ray diffraction, XRF, BET, Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and NMR. The catalyst demonstrated impressive output in the synthesis of various cyclic carbonates from epoxides. Epichlorohydrin had the best result and highest performance, transforming 97% of the cyclic carbonate in 4.5 h. This procedure has several advantages including mild reaction conditions, high yields, easy workup, short reaction time, reusability of the catalyst, and non-toxic catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742

    Article  CAS  PubMed  Google Scholar 

  2. Schaffner B, Schaffner F, Verevkin SP, Borner A (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110(8):4554–4581

    Article  CAS  PubMed  Google Scholar 

  3. Song Q-W, Zhou Z-H, He L-N (2017) Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem 19(16):3707–3728

    Article  CAS  Google Scholar 

  4. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries A look into the future. Energy Environ Sci 4(9):3287–3295

    Article  CAS  Google Scholar 

  5. Guerin W, Diallo AK, Kirilov E, Helou M, Slawinski M, Brusson J-M et al (2014) Enantiopure isotactic PCHC synthesized by ring-opening polymerization of cyclohexene carbonate. Macromolecules 47(13):4230–4235

    Article  CAS  Google Scholar 

  6. Rajabzadeh M, Khalifeh R, Eshghi H, Hafizi A (2020) Design and synthesis of CuO@ SiO2 multi-yolk@ shell and its application as a new catalyst for CO2 fixation reaction under solventless condition. J Ind Eng Chem 89:458–469

    Article  CAS  Google Scholar 

  7. Ji H, Naveen K, Kim D, Cho D-H (2020) Catalytic application of metal-organic frameworks for chemical fixation of CO2 into cyclic carbonate. Appl Chem Eng 31(3):258–266

    Google Scholar 

  8. Guha N, Gupta AK, Chatterjee S, Krishnan S, Singh MK, Rai DK (2021) Environmentally benign melamine functionalized silica-coated iron oxide for selective CO2 capture and fixation into cyclic carbonate. J CO2 Utilization 49:101575

    Article  CAS  Google Scholar 

  9. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) Mg− Al mixed oxides as highly active acid− base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc 121(18):4526–4527

    Article  CAS  Google Scholar 

  10. Kulal N, Vasista V, Shanbhag GV (2019) Identification and tuning of active sites in selected mixed metal oxide catalysts for cyclic carbonate synthesis from epoxides and CO2. J CO2 Utilization 33:434–444

    Article  CAS  Google Scholar 

  11. Bhanja P, Modak A, Bhaumik A (2018) Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chem Eur J 24(29):7278–7297

    Article  CAS  PubMed  Google Scholar 

  12. Lu X-B, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41(4):1462–1484

    Article  CAS  PubMed  Google Scholar 

  13. Bondarenko GN, Dvurechenskaya EG, Ganina OG, Alonso F, Beletskaya IP (2019) Solvent-free synthesis of cyclic carbonates from CO2 and epoxides catalyzed by reusable alumina-supported zinc dichloride. Appl Catal B 254:380–390

    Article  CAS  Google Scholar 

  14. Baalbaki HA, Roshandel H, Hein JE, Mehrkhodavandi P (2021) Conversion of dilute CO2 to cyclic carbonates at sub-atmospheric pressures by a simple indium catalyst. Catal Sci Technol 11(6):2119–2129

    Article  CAS  Google Scholar 

  15. Velpuri VR, Muralidharan K (2021) High yield room temperature conversion of carbon dioxide into cyclic carbonates catalyzed by mixed metal oxide (CuO-ZnO) nano-flakes/micro-flakes (Cozi-nmf). Appl Organomet Chem 35(6):e6224

    Article  CAS  Google Scholar 

  16. Duan R, Hu C, Zhou Y, Huang Y, Sun Z, Zhang H et al (2021) Propylene oxide cycloaddition with carbon dioxide and homopolymerization: Application of commercial beta zeolites. Ind Eng Chem Res 60(3):1210–1218

    Article  CAS  Google Scholar 

  17. Fierro F, Lamparelli DH, Genga A, Cucciniello R, Capacchione C (2023) I-LDH as a heterogeneous bifunctional catalyst for the conversion of CO2 into cyclic organic carbonates. Mol Catal 538:112994

    Article  CAS  Google Scholar 

  18. Ding Q-R, Yu Y, Cao C, Zhang J, Zhang L (2022) Stepwise assembly and reversible structural transformation of ligated titanium coated bismuth-oxo cores: Shell morphology engineering for enhanced chemical fixation of CO2. Chem Sci 13(12):3395–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khalifeh R, Karimi M, Rajabzadeh M, Hafizi A, Nogorani FS (2020) Synthesis and morphology control of nano CuAl2O4 hollow spheres and their application as an efficient and sustainable catalyst for CO2 fixation. J CO2 Utilization 41:101233

    Article  CAS  Google Scholar 

  20. Liu W, Li L, Shao W, Wang H, Dong Y, Zuo M et al (2023) Vacancy-cluster-mediated surface activation for boosting CO2 chemical fixation. Chem Sci 14(6):1397–1402

    Article  CAS  PubMed  Google Scholar 

  21. Mirhadi E, Ramazani A, Rouhani M, Joo SW (2013) Perlite-SO. Chemija 24(4):320–324

    CAS  Google Scholar 

  22. Ramazani A, Rouhani M, Mirhadi E, Sheikhi M, Ślepokura K, Lis T (2016) Perlite-SO3H nanoparticles as an efficient and reusable catalyst for one-pot three-component synthesis of 1, 2-dihydro-1-aryl-naphtho [1, 2-e][1, 3] oxazine-3-one derivatives under both microwave-assisted and thermal solvent-free conditions: single crystal X-ray structure analysis and theoretical study. Nanochem Res 1(1):87–107

    CAS  Google Scholar 

  23. Aksoy Ö, Alyamaç E, Mocan M, Sütçü M, Özveren-Uçar N, Özgür Seydibeyoğlu M (2022) Characterization of perlite powders from Izmir, Türkiye region. Physicochem. Probl. Miner. Process. 58(6):155277–155289

    Google Scholar 

  24. Kolvari E, Koukabi N, Hosseini MM, Khandani Z (2015) Perlite: an inexpensive natural support for heterogenization of HBF. RSC Adv 5:36828–36836

    Article  CAS  Google Scholar 

  25. Chakir A, Bessiere J, Kacemi KE, Marouf BB (2002) A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. J Hazard Mater 95(1–2):29–46

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira SB, de Carvalho da Silva F, Bezerra FA, Lourenço MC, Kaiser CR, Pinto AC et al (2010) Synthesis of α-and β-Pyran Naphthoquinones as a New Class of Antitubercular Agents. Archiv der Pharmazie 343(2):81–90

    Article  CAS  PubMed  Google Scholar 

  27. Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M (2016) Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo red. J Alloy Compd 680:309–314

    Article  CAS  Google Scholar 

  28. Baraka NE, Saffaj N, Mamouni R, Laknifli A, Younssi SA, Albizane A et al (2014) Elaboration of a new flat membrane support from Moroccan clay. Desalin Water Treat 52(7–9):1357–1361

    Article  Google Scholar 

  29. Brindha K, Amutha P, Krishnakumar B, do Nascimento Sobral AJF (2019) BiCl3-modified perlite as an effective catalyst for selective organic transformations: a green protocol. Res Chem Intermed 45:4367–4381

    Article  CAS  Google Scholar 

  30. Hosseini S, Borghei S, Vossoughi M, Taghavinia N (2007) Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl Catal B 74(1–2):53–62

    Article  CAS  Google Scholar 

  31. Sengul O, Azizi S, Karaosmanoglu F, Tasdemir MA (2011) Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build 43(2–3):671–676

    Article  Google Scholar 

  32. Yilmazer S, Ozdeniz MB (2005) The effect of moisture content on sound absorption of expanded perlite plates. Build Environ 40(3):311–318

    Article  Google Scholar 

  33. Alkan M, Doğan M (2001) Adsorption of copper (II) onto perlite. J Colloid Interface Sci 243(2):280–291

    Article  CAS  Google Scholar 

  34. Jahanshahi R, Akhlaghinia B (2015) Expanded perlite: an inexpensive natural efficient heterogeneous catalyst for the green and highly accelerated solvent-free synthesis of 5-substituted-1 H-tetrazoles using [bmim] N 3 and nitriles. RSC Adv 5(126):104087–104094

    Article  CAS  Google Scholar 

  35. Kolvari E, Koukabi N, Hosseini MM (2015) Perlite: A cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction. J Mol Catal A Chem 397:68–75

    Article  CAS  Google Scholar 

  36. Bezaatpour A, Amiri M, Vocke H, Bottke P, Zastrau M-F, Weers M et al (2023) Low-pressure CO2 fixation with epoxides via a new modified nano crystalline NH2-MIL-101 (Cr) in Solvent-free and cocatalyst free condition. J CO2 Utilization 68:102366

    Article  CAS  Google Scholar 

  37. Liu X, Zhang S, Song Q-W, Liu X-F, Ma R, He L-N (2016) Cooperative calcium-based catalysis with 1, 8-diazabicyclo [5.4.0]-undec-7-ene for the cycloaddition of epoxides with CO 2 at atmospheric pressure. Green Chem 18(9):2871–2876

    Article  CAS  Google Scholar 

  38. Nazeri MT, Ramezani M, Javanbakht S, Shaabani A (2022) Chemical CO2 fixation using a green biocatalytic system based on Ugi conjugated cobalt phthalocyanine on cellulose. Sustainable Energy Fuels 6(22):5134–5145

    Article  CAS  Google Scholar 

  39. Mamone M, Milcent T, Crousse B (2015) Reactivity of carbon dioxide in hydrofluoroethers: a facile access to cyclic carbonates. Chem Commun 51(64):12736–12739

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this research from Imam Khomeini International University, Iran is gratefully acknowledged.

Funding

There is no funding to report for this submission.

Author information

Authors and Affiliations

Authors

Contributions

Farshid Eskandari, performed the experiments, analyzed and interpreted the data, and wrote the paper.

Mohammad Bayat, conceived and designed the experiments; analyzed and interpreted the data; and contributed reagents, materials, analysis tools.

Corresponding author

Correspondence to Mohammad Bayat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, F., Bayat, M. Perlite-Catalyzed Chemical Fixation of Carbon Dioxide Under Solvent-free and Low-pressure CO2 Conditions. Silicon (2024). https://doi.org/10.1007/s12633-024-02956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02956-3

Keywords

Navigation