Skip to main content
Log in

A Critical Review of the Evaluation of Sio2-Incorporated Tio2 Nanocomposite for Photocatalytic Activity

  • Review
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The main aim of the present study was to determine the impact of the Silica (SiO2) on the photocatalytic activity of Titanium dioxide (TiO2) nano composite at various circumstance of preparation. Over the past few decades, there has been an increasing trend toward researching novel photocatalysts for water purification and protecting the environment from pollution. These organic pollutants have been degraded using various methods, including sophisticated heterogeneous photocatalysis (PHCs) using titanium dioxide (TiO2). One of the most promising technologies seems to be using a TiO2 photocatalyst. An appropriate architecture that reduces electron loss during the excitation state and promotes the absorption of photons is necessary to maintain the high efficiency of the TiO2 photocatalyst in heterogeneous PHCs reactions. The heterogeneous PHCs under UV–visible solar light must be significantly improved to further enhance the flow of photo-induced charge carriers during the excitation state. Recently, the intriguing and distinctive characteristics of binary oxide photocatalyst systems or silica (SiO2) doping have attracted much attention and have become a favorite subject of study for many scientific organizations. Compared to pure TiO2, the features of this SiO2 doping were found to improve the photocatalytic (PHC) behavior by increasing the surface area of the TiO2 photocatalyst system. Therefore, this work critically reviews the modification of TiO2/SiO2 photocatalysts for pollutant degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data are available in the manuscript.

Abbreviations

PHCs:

Photocatalytics

VB:

Valenece band

CB:

Conduction band

MOs:

Metal oxides

NCs:

Nanocomposites

PL:

Photoluminescence

Eg :

Energy band gap

References

  1. Abdali K (2022) Structural, Morphological, and Gamma Ray Shielding (GRS) Characterization of HVCMC/PVP/PEG Polymer Blend Encapsulated with Silicon Dioxide Nanoparticles. Silicon 14:9111–9116

    Article  CAS  Google Scholar 

  2. Jabbar SA, Khalil SM, Abdulridha AR et al (2022) Dielectric, AC Conductivity, and Optical Characterizations of (PVA-PEG) Doped SrO Hybrid NCs. Key Eng Mater 936:83–92

    Article  Google Scholar 

  3. Tuama AN, Abass KH, Agam MAB (2021) Efficiency enhancement of nano structured Cu2O: Ag/laser etched silicon-thin films fabricated via vacuum thermal evaporation technique for solar cell application. Optik 247:167980

    Article  CAS  Google Scholar 

  4. Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3(3):353–358

    Article  CAS  Google Scholar 

  5. Alawi AI, Al-Bermany E, Alnayli RS, Sabri MM, Ahmed NM, Albermany AKJ (2024) Impact of SiO2–GO hybrid nanomaterials on opto-electronic behavior for novel glass quinary (PAAm–PVP–PVA/SiO2–GO) hybrid nanocomposite for antibacterial activity and shielding applications. Opt Quant Electron 56:429. https://doi.org/10.1007/s11082-023-06070-3

    Article  CAS  Google Scholar 

  6. Tuama AN, Abbas KH, Hamzah MQ, Mezan SO, Jabbar AH, Agam MA (2020) An overview on characterization of silver/cuprous oxide nanometallic (Ag/Cu2O) as visible light PHC. Int J Adv Sci Technol 29(3):5008–5018

    Google Scholar 

  7. Ahlawat R, Srivastava VC, Mall ID, Sinha S (2008) Investigation of the electrocoagulation treatment of cotton blue dye solution using aluminium electrodes. Clean-Soil, Air, Water 36(10–11):863–869

    Article  CAS  Google Scholar 

  8. Liu Z, Sun L, Zhang Q, Teng Z, Sun H, Su C (2022) TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application. Chem Res Chin Univ 38(5):1123–1138

    Article  CAS  Google Scholar 

  9. Humayun M, Raziq F, Khan A, Luo W (2018) Modification strategies of TiO2 for potential applications in PHCs: a critical review. Green Chem Lett Rev 11(2):86–102

    Article  CAS  Google Scholar 

  10. Hamzah MQ, Jabbar AH, Mezan SO, Tuama AN, Agam MA (2019) Fabrications of PS/TiO2 nanocomposite for solar cells applications. In AIP Conference Proceedings 2151(020011). https://doi.org/10.1063/1.5124641

  11. Parrino F, Palmisano L (eds) (2020) Titanium dioxide (TiO2) and its applications. Elsevier, 1st edn. https://doi.org/10.1016/C2019-0-01050-3

  12. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  13. Asahi R, Taga Y, Mannstadt W, Freeman AJ (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61(11):7459

    Article  CAS  Google Scholar 

  14. Koelsch M, Cassaignon S, Minh CTT, Guillemoles JF, Jolivet JP (2004) Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films 451:86–92

    Article  Google Scholar 

  15. Zhang T, Liu Y, Rao Y, Li X, Yuan D, Tang S, Zhao Q (2020) Enhanced PHC activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light. Chem Eng J 384:123350

    Article  CAS  Google Scholar 

  16. Cunha DL, Kuznetsov A, Achete CA, da Hora Machado AE, Marques M (2018) Immobilized TiO2 on glass spheres applied to heterogeneous PHCs: Photoactivity, leaching and regeneration process. PeerJ 6:e4464

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abdali K, Abass KH, Al-Bermany E et al (2022) Morphological, Optical, ElectricalCharacterizations and Anti-Escherichia coli Bacterial Efficiency (AECBE) of PVA/PAAm/PEO Polymer Blend Doped with Silver NPs. Nano Biomed. https://doi.org/10.5101/nbe.v14i2.p114-122

  18. Nowotny MK, Sheppard LR, Bak T, Nowotny J (2008) Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J Phys Chem C 112:5275–5300

    Article  CAS  Google Scholar 

  19. Pan X, Yang MQ, Fu X, Zhang N, Xu YJ (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and PHC applications. Nanoscale 5(9):3601–3614

    Article  CAS  PubMed  Google Scholar 

  20. Katal R, Salehi M, Davood Abadi Farahani MH, Masudy-Panah S, Ong SL, Hu J (2018) Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight PHCs. ACS Appl Mater Interfaces 10(41):35316–35326

    Article  CAS  PubMed  Google Scholar 

  21. Xing Z, Zhou W, Du F, Zhang L, Li Z, Zhang H, Li W (2014) Facile synthesis of hierarchical porous TiO2 ceramics with enhanced PHC performance for micropolluted pesticide degradation. ACS Appl Mater Interfaces 6(19):16653–16660

    Article  CAS  PubMed  Google Scholar 

  22. Kumar SG, Devi LG (2011) Review on modified TiO2 PHCs under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241

    Article  CAS  PubMed  Google Scholar 

  23. Nawaz A, Mishra RK, Sabbarwal S, Kumar P (2021) Studies of physicochemical characterization and pyrolysis behavior of low-value waste biomass using Thermogravimetric analyzer: evaluation of kinetic and thermodynamic parameters. Bioresour Technol Rep 16:100858

    Article  CAS  Google Scholar 

  24. Nawaz A, Kumar P (2022) Elucidating the bioenergy potential of raw, hydrothermally carbonized and torrefied waste Arundo donax biomass in terms of physicochemical characterization, kinetic and thermodynamic parameters. Renew Energy 187:844–856

    Article  CAS  Google Scholar 

  25. Nawaz A, Kumar P (2022) Thermal degradation of hazardous 3-layered COVID-19 face mask through pyrolysis: Kinetic, thermodynamic, prediction modelling using ANN and volatile product characterization. J Taiwan Inst Chem Eng 139:104538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nawaz A, Kumar P (2022) Pyrolysis behavior of low value biomass (Sesbania bispinosa) to elucidate its bioenergy potential: Kinetic, thermodynamic and prediction modelling using artificial neural network. Renew Energy 200:257–270

    Article  Google Scholar 

  27. Nawaz A, Kumar P (2023) Impact of temperature severity on hydrothermal carbonization: Fuel properties, kinetic and thermodynamic parameters. Fuel 336:127166

    Article  CAS  Google Scholar 

  28. Bui VKH, Park D, Pham TN, An Y, Choi JS, Lee HU, Lee YC (2019) Synthesis of MgAC-Fe3O4/TiO2 hybrid NCs via sol-gel chemistry for water treatment by photo-Fenton and PHC reactions. Sci Rep 9(1):11855

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pénard AL, Gacoin T, Boilot JP (2007) Functionalized sol–gel coatings for optical applications. Acc Chem Res 40(9):895–902

    Article  PubMed  Google Scholar 

  30. Kibombo HS, Peng R, Rasalingam S, Koodali RT (2012) Versatility of heterogeneous PHCs: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catal Sci Technol 2(9):1737–1766

    Article  CAS  Google Scholar 

  31. Kruk M, Jaroniec M, Sayari A (1997) Structural and surface properties of siliceous and titanium-modified HMS molecular sieves. Microporous Mater 9(3–4):173–182

    Article  CAS  Google Scholar 

  32. Zhang W, Fröba M, Wang J, Tanev PT, Wong J, Pinnavaia TJ (1996) Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+ I-, S+ X-I+) and neutral (S° I°) assembly pathways: a comparison of physical properties and catalytic activity for peroxide oxidations. J Am Chem Soc 118(38):9164–9171

    Article  CAS  Google Scholar 

  33. Alawi AI, Al-Bermany E (2023) Newly Fabricated Ternary PAAm-PVA-PVP Blend Polymer Doped by SiO2: Absorption and Dielectric Characteristics for Solar Cell Applications and Antibacterial Activity. Silicon 15:5773–5789

    Article  CAS  Google Scholar 

  34. Oveisi H, Rahighi S, Jiang X, Nemoto Y, Beitollahi A, Wakatsuki S, Yamauchi Y (2010) Unusual antibacterial property of mesoporous titania films: drastic improvement by controlling surface area and crystallinity. Chem-An Asian J 5(9):1978–1983

    Article  CAS  Google Scholar 

  35. Yaparatne S, Tripp CP, Amirbahman A (2018) Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2/SiO2 photocatalysts. J Hazard Mater 346:208–217

    Article  CAS  PubMed  Google Scholar 

  36. De Witte K, Meynen V, Mertens M, Lebedev OI, Van Tendeloo G, Sepulveda-Escribano A, Cool P (2008) Multi-step loading of titania on mesoporous silica: Influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOCs. Appl Catal B 84(1–2):125–132

    Article  Google Scholar 

  37. Beyers E, Biermans E, Ribbens S, De Witte K, Mertens M, Meynen V, Cool P (2009) Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles. Appl Catal B 88(3–4):515–524

    Article  CAS  Google Scholar 

  38. Suzuki N, Jiang X, Radhakrishnan L, Takai K, Shimasaki K, Huang YT, Yamauchi Y (2011) Hybridization of photoactive titania nanoparticles with mesoporous silica nanoparticles and investigation of their PHC activity. Bull Chem Soc Jpn 84(7):812–817

    Article  CAS  Google Scholar 

  39. Kete M, Pavlica E, Fresno F, Bratina G, Štangar UL (2014) Highly active PHC coatings prepared by a low-temperature method. Environ Sci Pollut Res 21:11238–11249

    Article  CAS  Google Scholar 

  40. Ren C, Qiu W, Chen Y (2013) Physicochemical properties and PHC activity of the TiO2/SiO2 prepared by precipitation method. Sep Purif Technol 107:264–272

    Article  CAS  Google Scholar 

  41. Abdali K (2023) Novel Flexible Glass Composite Film for Stretchable Devices Applications. Silicon. https://doi.org/10.1007/s12633-023-02414-6

    Article  PubMed Central  Google Scholar 

  42. Adnan MAM, Phoon BL, Julkapli NM (2020) Mitigation of pollutants by chitosan/metallic oxide photocatalyst: a review. J Clean Prod 261:121190

    Article  Google Scholar 

  43. Danish MSS, Estrella LL, Alemaida IMA, Lisin A, Moiseev N, Ahmadi M, Senjyu T (2021) PHC applications of MOs for sustainable environmental remediation. Metals 11(1):80

    Article  CAS  Google Scholar 

  44. Grilli ML, Chevallier L, Di Vona ML, Licoccia S, Di Bartolomeo E (2005) Planar electrochemical sensors based on YSZ with WO3 electrode prepared by different chemical routes. Sens Actuators, B Chem 111:91–95

    Article  Google Scholar 

  45. Aydoğan Ş, Grilli ML, Yilmaz M, Çaldiran Z, Kaçuş H (2017) A facile growth of spray based ZnO films and device performance investigation for Schottky diodes: determination of interface state density distribution. J Alloy Compd 708:55–66

    Article  Google Scholar 

  46.  Attia AA, Hashim FS, Haneen Abass K (2023) Fabrication and characterization of p-Sb2O3:CuO/n-Si solar cell via thermal evaporation technique. Int J Nanosci 22:601–614. https://doi.org/10.1142/S0219581X23500230

  47. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  PubMed  Google Scholar 

  48. Guo T, Yao MS, Lin YH, Nan CW (2015) A comprehensive review on synthesis methods for transition-MO nanostructures. CrystEngComm 17(19):3551–3585

    Article  CAS  Google Scholar 

  49. Al-Bermany E, Mekhalif AT, Banimuslem HA et al (2023) Effect of green synthesis bimetallic Ag@SiO2 core–shell nanoparticles on absorption behavior and electrical properties of PVA-PEO NCs for optoelectronic applications. Silicon. https://doi.org/10.1007/s12633-023-02332-7

    Article  PubMed Central  Google Scholar 

  50. Pei C et al (2016) Superior adsorption performance for triphenylmethane dyes on 3D architectures assembled by ZnO nanosheets as thin as∼ 15 nm. J Hazard Mater 318:732–741

    Article  CAS  PubMed  Google Scholar 

  51. Qourzal S, Barka N, Tamimi M, Assabbane A, Nounah A, Ihlal A, Ait-Ichou Y (2009) Sol–gel synthesis of TiO2–SiO2 photocatalyst for β-naphthol photodegradation. Mater Sci Eng, C 29(5):1616–1620

    Article  CAS  Google Scholar 

  52. Wei T, Zhu YN, An X, Liu LM, Cao X, Liu H, Qu J (2019) Defect modulation of Z-scheme TiO2/Cu2O photocatalysts for durable water splitting. ACS Catal 9:8346–8354

    Article  CAS  Google Scholar 

  53. Li J, Liu L, Yu Y, Tang Y, Li H, Du F (2004) Preparation of highly PHC active nano-size TiO2–Cu2O particle composites with a novel electrochemical method. Electrochem Commun 6(9):940–943

    Article  CAS  Google Scholar 

  54. Liao DL, Badour CA, Liao BQ (2008) Preparation of nanosized TiO2/ZnO composite catalyst and its PHC activity for degradation of methyl orange. J Photochem Photobiol, A 194(1):11–19

    Article  CAS  Google Scholar 

  55. Nasirian M, Mehrvar M (2019) PHC degradation of aqueous methyl orange using a novel Ag/TiO2/Fe2O3 photocatalyst prepared by UV-assisted thermal synthesis. Desalin Water Treat 137:371–380

    Article  CAS  Google Scholar 

  56. Lavand AB, Ys Malghe, Singh SH (2016) Synthesis, characterization and investigation of visible light photocatalytic activity of C, N Co-doped ZnO. Adv Mater Lett 7:181–186. https://doi.org/10.5185/amlett.2016.5974

    Article  CAS  Google Scholar 

  57. Tuama AN (2023) Thermally deposited silver-doped cuprous oxide solar cell on textured silicon and its devices modelling (Doctoral dissertation, Universiti Tun Hussein Onn Malaysia). http://eprints.uthm.edu.my/id/eprint/8385

  58. Yumak T, Bragg D, Sabolsky EM (2019) Effect of synthesis methods on the surface and electrochemical characteristics of MO/activated carbon composites for supercapacitor applications. Appl Surf Sci 469:983–993

    Article  CAS  Google Scholar 

  59. Ikram M, Rashid M, Haider A, Naz S, Haider J, Raza A, Maqbool M (2021) A review of PHC characterization, and environmental cleaning, of MO nanostructured materials. Sustain Mater Technol 30:e00343

    CAS  Google Scholar 

  60. Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of PHC materials for environmental remediation. J Hazard Mater 211:3–29

    Article  PubMed  Google Scholar 

  61. Hadjltaief HB, Zina MB, Galvez ME, Da Costa P (2016) PHC degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. J Photochem Photobiol, A 315:25–33

    Article  Google Scholar 

  62. Jesus MAML, Ferreira AM, Lima LFS, Batista GF, Mambrini RV, Mohallem NDS (2021) Micro-mesoporous TiO2/SiO2 NCs: Sol-gel synthesis, characterization, and enhanced photodegradation of quinoline. Ceram Int 47(17):23844–23850

    Article  CAS  Google Scholar 

  63. Theerthagiri J, Chandrasekaran S, Salla S, Elakkiya V, Senthil RA, Nithyadharseni P, Kim HS (2018) Recent developments of MO based heterostructures for PHC applications towards environmental remediation. J Solid State Chem 267:35–52

    Article  CAS  Google Scholar 

  64. Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK (2020) Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6(7). https://doi.org/10.1016/j.heliyon.2020.e04508

  65. Aljaafari A (2022) Effect of metal and non-metal doping on the PHC performance of titanium dioxide (TiO2): a review. Curr Nanosci 18(4):499–519

    Article  CAS  Google Scholar 

  66. Peiris S, de Silva HB, Ranasinghe KN, Bandara SV, Perera IR (2021) Recent development and future prospects of TiO2 PHCs. J Chin Chem Soc 68(5):738–769

    Article  CAS  Google Scholar 

  67. Liga MV, Maguire-Boyle SJ, Jafry HR, Barron AR, Li Q (2013) Silica decorated TiO2 for virus inactivation in drinking water–simple synthesis method and mechanisms of enhanced inactivation kinetics. Environ Sci Technol 47(12):6463–6470

    Article  CAS  PubMed  Google Scholar 

  68. Jeon H, Lee CS, Patel R, Kim JH (2015) Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic rubbery comb copolymer. ACS Appl Mater Interfaces 7(14):7767–7775

    Article  CAS  PubMed  Google Scholar 

  69. Balachandran K, Venckatesh R, Sivaraj R, Rajiv P (2014) TiO2 nanoparticles versus TiO2–SiO2 NCs: A comparative study of photo catalysis on acid red 88. Spectrochim Acta Part A Mol Biomol Spectrosc 128:468–474

    Article  CAS  Google Scholar 

  70. Katoh R, Furube A, Yamanaka KI, Morikawa T (2010) Charge separation and trapping in N-doped TiO2 photocatalysts: A time-resolved microwave conductivity study. J Phys Chem Lett 1(22):3261–3265

    Article  CAS  Google Scholar 

  71. Nilchi A, Janitabar-Darzi S, Mahjoub AR, Rasouli-Garmarodi S (2010) New TiO2/SiO2 NCs—Phase transformations and PHC studies. Colloids Surf, A 361(1–3):25–30

    Article  CAS  Google Scholar 

  72. Wei Q, Li Y, Zhang T, Tao X, Zhou Y, Chung K, Xu C (2014) TiO2–SiO2-composite-supported catalysts for residue fluid catalytic cracking diesel hydrotreating. Energy Fuels 28(12):7343–7351

    Article  CAS  Google Scholar 

  73. Riazian M (2014) Dependence of PHC activity of TiO2/SiO2 nanopowders. J Nanostruct 4(4):433–441

    Google Scholar 

  74. Cetinkaya T, Neuwirthová L, Kutláková KM, Tomášek V, Akbulut H (2013) Synthesis of nanostructured TiO2/SiO2 as an effective photocatalyst for degradation of acid orange. Appl Surf Sci 279:384–390

    Article  CAS  Google Scholar 

  75. Wu L, Zhou Y, Nie W, Song L, Chen P (2015) Synthesis of highly monodispersed teardrop-shaped core–shell SiO2/TiO2 nanoparticles and their photocatalytic activities. Appl Surf Sci 351:320–326

    Article  CAS  Google Scholar 

  76. Krasienapibal TS, Fukumura T, Hirose Y, Hasegawa T (2014) Improved room temperature electron mobility in self-buffered anatase TiO2 epitaxial thin film grown at low temperature. Jpn J Appl Phys 53(9):090305

    Article  CAS  Google Scholar 

  77. Abdellatif S, Sharifi P, Kirah K, Ghannam R, Khalil ASG, Erni D, Marlow F (2018) Refractive index and scattering of porous TiO2 films. Microporous Mesoporous Mater 264:84–91

    Article  CAS  Google Scholar 

  78. Diana M, Tasca M, Delibas M, Rusu GI (2000) On the structural properties and optical transmittance of TiO2 rf sputtered thin films. Appl Surf Sci 156:200–206

    Article  Google Scholar 

  79. Sellers MC, Seebauer EG (2011) Measurement method for carrier concentration in TiO2 via the Mott-Schottky approach. Thin Solid Films 519(7):2103–2110

    Article  CAS  Google Scholar 

  80. Khannyra S, Mosquera MJ, Addou M, Gil MLA (2021) Cu-TiO2/SiO2 photocatalysts for concrete-based building materials: Self-cleaning and air de-pollution performance. Constr Build Mater 313:125419

    Article  CAS  Google Scholar 

  81. Pallotti DK, Passoni L, Maddalena P, Di Fonzo F, Lettieri S (2017) Photoluminescence mechanisms in anatase and rutile TiO2. J Phys Chem C 121(16):9011–9021

    Article  CAS  Google Scholar 

  82. Wang J, Liu B, Nakata K (2019) Effects of crystallinity,{001}/{101} ratio, and Au decoration on the PHC activity of anatase TiO2 crystals. Chin J Catal 40(3):403–412

    Article  CAS  Google Scholar 

  83. Vishwas M, Rao KN, Gowda KA, Chakradhar RPS (2011) Optical, electrical and dielectric properties of TiO2–SiO2 films prepared by a cost effective sol–gel process. Spectrochim Acta Part A Mol Biomol Spectrosc 83(1):614–617

    Article  CAS  Google Scholar 

  84. Komaraiah D, Radha E, Sivakumar J, Reddy MR, Sayanna R (2020) Photoluminescence and PHC activity of spin coated Ag+ doped anatase TiO2 thin films. Opt Mater 108:110401

    Article  CAS  Google Scholar 

  85. Serga V, Burve R, Krumina A, Pankratova V, Popov AI, Pankratov V (2021) Study of phase composition, PHC activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method. J Market Res 13:2350–2360

    CAS  Google Scholar 

  86. Lukačević I, Gupta SK, Jha PK, Kirin D (2012) Lattice dynamics and Raman spectrum of rutile TiO2: The role of soft phonon modes in pressure induced phase transition. Mater Chem Phys 137(1):282–289

    Article  Google Scholar 

  87. Feng H, Xu H, Feng H, Gao Y, Jin X (2019) The sol-gel synthesis and PHC activity of Gd-SiO2-TiO2 photocatalyst. Chem Phys Lett 733:136676

    Article  CAS  Google Scholar 

  88. Jung SM, Grange P (2002) TiO2–SiO2 mixed oxide modified with H2SO4: II. Acid properties and their SCR reactivity. Appl Catal A: Gen 228(1–2):65–73

    Article  CAS  Google Scholar 

  89. Czech B, Buda W (2015) Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environ Res 137:176–184

    Article  CAS  PubMed  Google Scholar 

  90. Gupta T, Cho J, Prakash J (2021) Hydrothermal synthesis of TiO2 nanorods: for mation chemistry, growth mechanism, and tailoring of surface properties for PHC activities. Mater Today Chem 20:100428

    Article  CAS  Google Scholar 

  91. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for PHC degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    Article  CAS  PubMed  Google Scholar 

  92. Nair RG, Das A, Paul S, Rajbongshi B, Samdarshi SK (2017) MWCNT decorated V-doped titania: An efficient visible active photocatalyst. J Alloy Compd 695:3511–3516

    Article  CAS  Google Scholar 

  93. Rosales A, Esquivel K (2020) SiO2@ TiO2 composite synthesis and its hydrophobic applications: a review. Catalysts 10(2):171

    Article  CAS  Google Scholar 

  94. Tobaldi DM, Tucci A, Škapin AS, Esposito L (2010) Effects of SiO2 addition on TiO2 crystal structure and PHC activity. J Eur Ceram Soc 30(12):2481–2490

    Article  CAS  Google Scholar 

  95. Dong W, Sun Y, Lee CW, Hua W, Lu X, Shi Y, ... Zhao D (2007) Controllable and repeatable synthesis of thermally stable anatase nanocrystal− silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc 129(45), 13894–13904

  96. Xu G, Zheng Z, Wu Y, Feng N (2009) Effect of silica on the microstructure and PHC properties of titania. Ceram Int 35(1):1–5

    Article  Google Scholar 

  97. Wu A, Wang D, Wei C, Zhang X, Liu Z, Feng P, Niu J (2019) A comparative PHC study of TiO2 loaded on three natural clays with different morphologies. Appl Clay Sci 183:105352

    Article  CAS  Google Scholar 

  98. Wu S, Tan X, Lei J, Chen H, Wang L, Zhang J (2019) Ga-doped and Pt-loaded porous TiO2–SiO2 for PHC nonoxidative coupling of methane. J Am Chem Soc 141(16):6592–6600

    Article  CAS  PubMed  Google Scholar 

  99. Teh CM, Mohamed AR (2011) Roles of titanium dioxide and ion-doped titanium dioxide on PHC degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J Alloy Compd 509(5):1648–1660

    Article  CAS  Google Scholar 

  100. Murgolo S, Petronella F, Ciannarella R, Comparelli R, Agostiano A, Curri ML, Mascolo G (2015) UV and solar-based PHC degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes. Catal Today 240:114–124

    Article  CAS  Google Scholar 

  101. Sood S, Umar A, Mehta SK, Kansal SK (2015) Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven PHC degradation of toxic organic compounds. J Colloid Interface Sci 450:213–223

    Article  CAS  PubMed  Google Scholar 

  102. Zhu J, Zäch M (2009) Nanostructured materials for PHC hydrogen production. Curr Opin Colloid Interface Sci 14(4):260–269

    Article  CAS  Google Scholar 

  103. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for PHC and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535

    Article  CAS  PubMed  Google Scholar 

  104. Shi W, Fang WX, Wang JC, Qiao X, Wang B, Guo X (2021) pH-controlled mechanism of PHC RhB degradation over gC3N4 under sunlight irradiation. Photochem Photobiol Sci 20:303–313

    Article  CAS  PubMed  Google Scholar 

  105. Hu K, Li R, Ye C, Wang A, Wei W, Hu D, ... Yan K (2020) Facile synthesis of Z-scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for PHC degradation of ciprofloxacin. J Clean Prod 253, 120055

  106. Kosmulski M (2006) pH-dependent surface charging and points of zero charge: III. Update. J Colloid Interface Sci 298(2):730–741

    Article  CAS  PubMed  Google Scholar 

  107. Shifu C, Gengyu C (2005) PHC degradation of organophosphorus pesticides using floating photocatalyst TiO2· SiO2/beads by sunlight. Sol Energy 79(1):1–9

    Article  Google Scholar 

  108. Li X, Chen Y, Tao Y, Shen L, Xu Z, Bian Z, Li H (2022) Challenges of PHCs and their coping strategies. Chem Catalysis 2(6):1315–1345

    Article  CAS  Google Scholar 

  109. Rafiq A, Ikram M, Ali S, Niaz F, Khan M, Khan Q, Maqbool M (2021) PHC degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem 97:111–128

    Article  CAS  Google Scholar 

  110. Cui L, Song Y, Wang F, Sheng Y, Zou H (2019) Electrospinning synthesis of SiO2-TiO2 hybrid nanofibers with large surface area and excellent PHC activity. Appl Surf Sci 488:284–292

    Article  CAS  Google Scholar 

  111. Zhu Q, Pan D, Sun Y, Qi D (2022) Controllable Microemulsion Synthesis of Hybrid TiO2–SiO2 Hollow Spheres and Au-Doped Hollow Spheres with Enhanced PHC Activity. Langmuir 38(13):4001–4013

    Article  CAS  PubMed  Google Scholar 

  112. Luna M, Gatica JM, Vidal H, Mosquera MJ (2020) Use of Au/N-TiO2/SiO2 photocatalysts in building materials with NO depolluting activity. J Clean Prod 243:118633

    Article  CAS  Google Scholar 

  113. Pinho L, Mosquera MJ (2013) PHC activity of TiO2–SiO2 NCs applied to buildings: influence of particle size and loading. Appl Catal B 134:205–221

    Article  Google Scholar 

  114. Mendoza C, Valle A, Castellote M, Bahamonde A, Faraldos M (2015) TiO2 and TiO2–SiO2 coated cement: Comparison of mechanic and PHC properties. Appl Catal B 178:155–164

    Article  CAS  Google Scholar 

  115. Fatimah I, Prakoso NI, Sahroni I, Musawwa MM, Sim YL, Kooli F, Muraza O (2019) Physicochemical characteristics and PHC performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon 5(11). https://doi.org/10.1016/j.heliyon.2019.e02766

  116. Nadrah P, Gaberšček M, Škapin AS (2017) Selective degradation of model pollutants in the presence of core@ shell TiO2@ SiO2 photocatalyst. Appl Surf Sci 405:389–394

    Article  CAS  Google Scholar 

  117. Pakdel E, Daoud WA, Seyedin S, Wang J, Razal JM, Sun L, Wang X (2018) Tunable PHC selectivity of TiO2/SiO2 NCs: Effect of silica and isolation approach. Colloids Surf, A 552:130–141

    Article  CAS  Google Scholar 

  118. Jiang Q, Huang J, Ma B, Yang Z, Zhang T, Wang X (2020) Recyclable, hierarchical hollow photocatalyst TiO2@ SiO2 composite microsphere realized by raspberry-like SiO2. Colloids Surf, A 602:125112

    Article  CAS  Google Scholar 

  119. Dong W, Lee CW, Lu X, Sun Y, Hua W, Zhuang G, Zhao D (2010) Synchronous role of coupled adsorption and PHC oxidation on ordered mesoporous anatase TiO2–SiO2 NCs generating excellent degradation activity of RhB dye. Appl Catal B 95(3–4):197–207

    Article  CAS  Google Scholar 

  120. Romero-Moran A, Sanchez-Salas JL, Molina-Reyes J (2021) Influence of selected reactive oxygen species on the photocatalytic activity of TiO2/SiO2 composite coatings processed at low temperature. Appl Catal B 291:119685

    Article  CAS  Google Scholar 

  121. Nawaz A, Singh B, Kumar P (2023) H3PO4-modified Lagerstroemia speciosa seed hull biochar for toxic Cr (VI) removal: isotherm, kinetics, and thermodynamic study. Biomass Convers Biorefinery 13(8):7027–7041

    Article  CAS  Google Scholar 

  122. Zhu Y, Li H, Zhang G, Meng F, Li L, Wu S (2018) Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Biores Technol 261:142–150

    Article  CAS  Google Scholar 

  123. Jiahao W, Weiquan C (2020) One-step hydrothermal preparation of N-doped carbon spheres from peanut hull for efficient removal of Cr (VI). J Environ Chem Eng 8(6):104449

    Article  Google Scholar 

  124. Mirabedini A, Mirabedini SM, Babalou AA, Pazokifard S (2011) Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2 nanocomposite in an aqueous solution and acrylic-based coatings. Prog Org Coat 72(3):453–460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Physics, University of Babylon, Iraq, for their support.

Funding

No funding was applied.

Author information

Authors and Affiliations

Authors

Contributions

Alaa Nihad Tuama, Ehssan Al-Bermany and Raad Shaker Alnayli suggested and designed the stature of the paper, Alaa Nihad Tuama wrote introduction section, Khalid Haneen Abass wrote the contribution of MOs in enhancing PHCs section and abstract, Karar Abdali wrote the properties of TiO2/SiO2 and TiO2/SiO2 structure sections and Muhammad Hasnain Jameel contributed to the thermal properties of TiO2/SiO2, Ehssan Al-Bermany contributed to the electrical and optical properties of TiO2/SiO2 and TiO2/SiO2’s luminescence and lattice dynamical characteristics, and revied the whole paper. Alaa Nihad Tuama contributed to surface morphological properties of TiO2/SiO2 and Factors influencing the efficiency of photodegradation, Raad Shaker Alnayli wrote PHC activity of TiO2/SiO2 and conclusions. All authors reviewed all papers from scientific literature as they summarized the findings of existing literature, reviewed, read, and approved the final copy.

Corresponding author

Correspondence to Ehssan Al-Bermany.

Ethics declarations

Ethics Declarations

The manuscript does not involve any studies on humans or animals.

Competing Interests

The authors declare no competing interests.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Dual-Publication Statement

N/a.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• PHCs using TiO2.

• Synergetic interaction of TiO2 with SiO2.

• The most important obstacles and challenges in PHCs.

• Improved PHC performance.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuama, A.N., Al-Bermany, E., Alnayli, R.S. et al. A Critical Review of the Evaluation of Sio2-Incorporated Tio2 Nanocomposite for Photocatalytic Activity. Silicon (2024). https://doi.org/10.1007/s12633-024-02870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02870-8

Keywords

Navigation