Skip to main content

Advertisement

Log in

Investigation of the Structural, Elastic, and Radiation Shielding Properties of the SiO2 –Pb3O4–ZnO –Y2O3 Glass System

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This work examined the SiO2–Pb3O4–ZnO–Y2O3 glasses mechanical, structural, and radiation shielding features. X-ray diffraction is a powerful technique for investigating the structural properties of these glasses. Experimental results were used to evaluate the mechanical characteristics, and the Makishima and Mackenzie model's semi-empirical approaches were used to investigate the elastic properties. Longitudinal velocity VL increase from 4935 m/s to 5325 m/s, while transverse velocity VT increase from 2520 m/s to 2905 m/s. Hardness improved from 4.41 to 8.31 GPa. The behaviour of the elastic moduli at both theoretical and experimental levels is the same. The mass attenuation coefficients (MAC), mean free paths (MFP), tenth & half-value layers (TVL), (HVL), and energy building factors (EBF) were estimated. Overall, higher MAC values were produced by a decrease in ZnO concentration and an increase in Y2O3 content. As the concentration of Y2O3 increases, the MFP, TVL, and HVL values decrease. Better radiation shielding is provided by lower MFP, TVL, and HVL values. The MFP, TVL, and HVL values are lower in the G 5 sample with the Y2O3 contribution (5%, mole). Higher concentrations of Y2O3 in glasses with a SiO2-Pb3O4-ZnO-composition were shown to have improved radiation shielding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Kurtulus R, Kavas T, Toplan HO, Akkurt I (2023) High-density and transparent boro-tellurite glass system against ionizing radiation: Fabrication and extensive characterization studies. Ceram Int 49, 11: Part B 18455–18462, https://doi.org/10.1016/j.ceramint.2023.02.217

  2. Shaaban KS, Al-Baradi AM, Ali AM (2022) Gamma-ray shielding and mechanical characteristics of iron-doped lead phosphosilicate glasses. SILICON 14:8971–8979. https://doi.org/10.1007/s12633-022-01702-x

    Article  CAS  Google Scholar 

  3. Aloraini DA, Ashour A, Shaaban KS (2023) Effect of Various Na2O-MoO3 Concentrations on the Thermal, Mechanical, and Radiation-resisting Attributes of Zinc-borosilicate Glasses. SILICON. https://doi.org/10.1007/s12633-023-02804-w

    Article  Google Scholar 

  4. Rammah YS, El-Agawany FI, Wahab EAA, Hessien MM, Shaaban KS (2022) Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiat Phys Chem 193:109956. https://doi.org/10.1016/j.radphyschem.2021.109956

    Article  CAS  Google Scholar 

  5. El-Maaref AA, Alotaibi BM, Alharbi N et al (2022) Effect of Fe2O3 as an Aggregate Replacement on Mechanical, and Gamma/ Neutron Radiation Shielding Properties of Phosphoaluminate Glasses. J Inorg Organomet Polym 32:3117–3127. https://doi.org/10.1007/s10904-022-02345-6

    Article  CAS  Google Scholar 

  6. Shaaban KS, Alotaibi BM, Alharbiy N et al (2022) Impact of TiO2 on DTA and Elastic Moduli of Calcium Potassium Borophosphosilicate Glasses in Prelude for Use in Dental and Orthopedic Applications. SILICON 14:11991–12000. https://doi.org/10.1007/s12633-022-02029-3

    Article  CAS  Google Scholar 

  7. Shaaban KS, Alyousef HA, Alotaibi BM et al (2022) The Vital Role of TiO2 on the Bioglass System P2O5-CaO-B2O3-SiO2- K2O for Optics and Shielding Characteristics. J Inorg Organomet Polym 32:4295–4303. https://doi.org/10.1007/s10904-022-02446-2

    Article  CAS  Google Scholar 

  8. Alghasham HA, Ismail YA, Aloraini DA, Shaaban K (2024) Elucidating the influences of MoO3 in Na2O- ZnO - B2O3 - SiO2: Fabrication, optical, and γ-ray protection properties for the novel high-density glasses. Materials Today Communications 38:107840. https://doi.org/10.1016/j.mtcomm.2023.107840

    Article  CAS  Google Scholar 

  9. Koubisy MSI, Shaaban KS, Wahab EAA, Sayyed MI, Mahmoud KA (2021) Synthesis, structure, mechanical and radiation shielding features of 50SiO2–(48 + X) Na2B4O7–(2 − X) MnO2 glasses. Eur Phys J Plus 136 (2). https://doi.org/10.1140/epjp/s13360-021-01125-4.

  10. Shaaban KS, Al-Baradi AM, Ali AM (2022) The Impact of Cr2O3 on the Mechanical, Physical, and Radiation Shielding Characteristics of Na2B4O7–CaO–SiO2 Glasses. SILICON 14:10375–10382. https://doi.org/10.1007/s12633-022-01783-8

    Article  CAS  Google Scholar 

  11. Wahab EAA, Alyousef HA, El-Rehim AFA et al (2023) Basicity, Optical Features, and Neutron/Charged Particle Attenuation Characteristics of P2O5-As2O3-PbO Glasses Doped with Tungsten Ions. J Electron Mater 52:219–236. https://doi.org/10.1007/s11664-022-09969-x

    Article  CAS  Google Scholar 

  12. Al-Baradi AM, Wahab EAA, Shaaban KS (2022) Preparation and Characteristics of B2O3 – SiO2 – Bi2O3 – TiO2 – Y2O3 Glasses and Glass-Ceramics. SILICON 14:5277–5287. https://doi.org/10.1007/s12633-021-01286-y

    Article  CAS  Google Scholar 

  13. Althagafi TM, Sayed MA, Alghasham HA et al (2023) The Impact of Changing the LiF Concentration on Structural, Thermal, Physical, and Optical Properties of CdO—SiO2—B2O3—MoO3—LiF Glasses. SILICON. https://doi.org/10.1007/s12633-023-02567-4

    Article  Google Scholar 

  14. Algarni SA, El-Maaref AA, Alotaibi BM et al (2022) Physical, Optical, and Radiation Shielding Features of Yttrium Lithium Borate Glasses. J Inorg Organomet Polym 32:2873–2881. https://doi.org/10.1007/s10904-022-02321-0

    Article  CAS  Google Scholar 

  15. Shaaban KS, Al-Baradi AM, Ali AM (2022) Investigation of BaO reinforced TiO2–P2O5–li2O glasses for optical and neutron shielding applications. RSC Adv 12(5):3036–3043. https://doi.org/10.1039/d2ra00171c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaaban KhS, Tamam N, Hawra A, Alghasham ZA, Alrowaili MS, Al-Buriahi, Takwa E, Ellakwa (2023) Thermal, optical, and radiation shielding capacity of B2O3-MoO3-Li2O- Nb2O5 glasses. Mater Today Commun 37;107325. https://doi.org/10.1016/j.mtcomm.2023.107325

  17. Shaaban KS, Alomairy S, Al-Buriahi MS (2021) Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. J Mater Sci: Mater Electron 32:26034–26048. https://doi.org/10.1007/s10854-021-05885-8

    Article  CAS  Google Scholar 

  18. El-Rehim AFA, Zahran HY, Yahia IS, Wahab EAA, Shaaban KS (2021) Structural, Elastic Moduli, and Radiation Shielding of SiO2-TiO2-La2O3-Na2O Glasses Containing Y2O3. J Mater Eng Perform 30:1872–1884. https://doi.org/10.1007/s11665-021-05513-w

    Article  CAS  Google Scholar 

  19. Shaaban KS, Althagafi TM, Ashour A, Alalawi A, Al-Buriahi M, Ibraheem AA (2024) The role of Nb2O5 on structural, mechanical, and gamma-ray shielding characteristics of lithium molybdenum borate glasses. Radiat Phys Chem 216:111440. https://doi.org/10.1016/j.radphyschem.2023.111440

    Article  CAS  Google Scholar 

  20. Sayyed MI, Sadeq MS, Kh S, Shaaban AF, El-Rehim A, Ali AM, Morshidy HY ((2023)) Elucidating the effect of La2O3–B2O3 exchange on structure, optical and radiation shielding improvements of Na2O–NiO–B2O3 glass. Opt Mater 142:114051. https://doi.org/10.1016/j.optmat.2023.114051

  21. Sayed MA, Basha B, Al-Harbi N et al (2023) Investigation of Elastic Moduli and Gamma-Ray Shielding Parameters of P2O5-SiO2-BaO Glasses Doped with Varying WO3. SILICON 15:6463–6471. https://doi.org/10.1007/s12633-023-02537-w

    Article  CAS  Google Scholar 

  22. Laifi J, Althagafi TM, Ibrahim EH et al (2023) Characterization of Mechanical and Radiation Shielding Ability of CdO - SiO2 - B2O3 - MoO3 - LiF Glasses. SILICON. https://doi.org/10.1007/s12633-023-02699-7

    Article  Google Scholar 

  23. El-Rehim AFA, Shaaban KS (2021) Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J Mater Sci: Mater Electron 32:4651–4671. https://doi.org/10.1007/s10854-020-05204-7

    Article  CAS  Google Scholar 

  24. B. Basha , Kh. S. Shaaban , E.A. Abdel Wahab (2023) The effect of tungsten ions on the structural, elastic moduli, and shielding characteristics of arsenic lead phosphate glasses. Dig J Nanomater Biostructures 18 (2):713 – 726. https://doi.org/10.15251/DJNB.2023.182.713

  25. Shaaban KS, Alyousef HA, El-Rehim AFA (2022) CeO2 Reinforced B2O3–SiO2–MoO3 Glass System: A Characterization Study Through Physical, Mechanical and Gamma / Neutron Shields Characteristics. SILICON 14:12001–12012. https://doi.org/10.1007/s12633-022-02124-5

    Article  CAS  Google Scholar 

  26. Şakar E, Özpolat ÖF, Alım B, Sayyed MI, Kurudirek M (2020) PhyX / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Phys Chem 166:108496. https://doi.org/10.1016/j.radphyschem

    Article  Google Scholar 

  27. Shaaban KS, Alotaibi BM, Algarni SA et al (2022) Chemical Composition, Mechanical, and Thermal Characteristics of Bioactive Glass for Better Processing Features. SILICON 14:10817–10826. https://doi.org/10.1007/s12633-022-01784-7

    Article  CAS  Google Scholar 

  28. Shaaban KS, Al-Baradi AM, Wahab EAA (2022) The Impact of Y2O3 on Physical and Optical Characteristics, Polarizability, Optical Basicity, and Dispersion Parameters of B2O3 – SiO2 – Bi2O3 – TiO2 Glasses. SILICON 14:5057–5065. https://doi.org/10.1007/s12633-021-01309-8

    Article  CAS  Google Scholar 

  29. Ali AM, Alrowaili ZA, Al-Baradi AM et al (2022) A Study of Thermal, and Optical Properties of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5–x) LiF- x BaO Glasses. SILICON 14:6447–6455. https://doi.org/10.1007/s12633-021-01440-6

    Article  CAS  Google Scholar 

  30. Shaaban KS, Alotaibi BM, Alharbiy N et al (2022) Fabrication of lithium borosilicate glasses containing Fe2O3 and ZnO for FT-IR, UV–Vis–NIR, DTA, and highly efficient shield. Appl Phys A 128:333. https://doi.org/10.1007/s00339-022-05474-4

    Article  CAS  Google Scholar 

  31. Alomairy S, Aboraia AM, Shaaban ER, Shaaban KS (2021) Comparative Studies on Spectroscopic and Crystallization Properties of Al2O3 -Li2O- B2O3-TiO2 Glasses. Braz J Phys 51:1237–1248. https://doi.org/10.1007/s13538-021-00928-1

    Article  CAS  Google Scholar 

  32. Alrowaili ZA, Al-Baradi AM, Sayed MA, Mossad Ali A, Abdel Wahab EA, Al-Buriahi MS, Shaaban KS (2021) The impact of Fe2O3 on the dispersion parameters and gamma / fast neutron shielding characteristics of lithium borosilicate glasses. Optik 168259. https://doi.org/10.1016/j.ijleo.2021.168259

  33. Shaaban KS, Boukhris I, Kebaili I et al (2022) Spectroscopic and Attenuation Shielding Studies on B2O3-SiO2-LiF- ZnO-TiO2 Glasses. SILICON 14:3091–3100. https://doi.org/10.1007/s12633-021-01080-w

    Article  CAS  Google Scholar 

  34. Sayyed MI, Morshidy HY, Shaaban KhS, Abd El-Rehim AF, Ali AM, Sadeq MS (2023) Impacts of BaO additions on structure, linear/nonlinear optical properties and radiation shielding competence of BaO–NiO–ZnO–B2O3 glasses. Opt Mater 144:114300. https://doi.org/10.1016/j.optmat.2023.114300

  35. Wahab EAA, Ahmed EM, Rammah YS et al (2022) Basicity, Electronegativity, Optical Parameters and Radiation Attenuation Characteristics of P2O5-As2O3-PbO Glasses Doped Vanadium Ions. J Inorg Organomet Polym 32:3983–3996. https://doi.org/10.1007/s10904-022-02400-2

    Article  CAS  Google Scholar 

  36. Alrowaili ZA, Ali AM, Al-Baradi AM et al (2022) A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Opt Quant Electron 54:88. https://doi.org/10.1007/s11082-021-03447-0

    Article  CAS  Google Scholar 

  37. Shaaban KhS, Alotaibi BM, Alharbi N, Alrowaili ZA, Al-Buriahi MS, Sayed AM, Abd El-Rehim AF (2022) Physical, optical, and radiation characteristics of bioactive glasses for dental prosthetics and orthopaedic implants applications. Radiat Phys Chem 193: 109995. https://doi.org/10.1016/j.radphyschem.2022.109995.

  38. Shaaban KS, Al-Baradi AM, Ali AM (2022) Physical, optical, and advanced radiation absorption characteristics of cadmium lead phosphate glasses containing MoO3. J Mater Sci: Mater Electron 33:3297–3305. https://doi.org/10.1007/s10854-021-07530-w

    Article  CAS  Google Scholar 

  39. Alomairy S, Alrowaili ZA, Kebaili I et al (2022) Synthesis of Pb3O4-SiO2-ZnO-WO3 Glasses and their Fundamental Properties for Gamma Shielding Applications. SILICON 14:5661–5671. https://doi.org/10.1007/s12633-021-01347-2

    Article  CAS  Google Scholar 

  40. Mahmoud K, Alsubaie A, Wahab EAA et al (2022) Research on the Effects of Yttrium on Bismuth Titanate Borosilicate Glass System. SILICON 14:3419–3427. https://doi.org/10.1007/s12633-021-01125-0

    Article  CAS  Google Scholar 

  41. Shaaban KhS, Al-Baradi AM, Alotaibi BM, Abd El-Rehim AF (2023) Mechanical and radiation shielding features of lithium titanophosphate glasses doped BaO, J Mater Res Technol 23, 756–764. https://doi.org/10.1016/j.jmrt.2023.01.062

  42. Shaaban KS, Alotaibi BM, Alrowaili ZA et al (2023) Thermal and Mechanical Studies of Cerium Molybdenum Borosilicate Glasses and Glass-Ceramics. SILICON 15:5233–5243. https://doi.org/10.1007/s12633-023-02433-3

    Article  CAS  Google Scholar 

  43. Shaaban KS, Alrowaili ZA, Al-Baradi AM et al (2022) Mechanical and Thermodynamic Characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5–x) LiF- x BaO Glasses. SILICON 14:6457–6465. https://doi.org/10.1007/s12633-021-01441-5

    Article  CAS  Google Scholar 

  44. Al-Baradi AM, Alotaibi BM, Alharbi N et al (2022) Gamma Radiation Shielding and Mechanical Studies on Highly Dense Lithium Iron Borosilicate Glasses Modified by Zinc Oxide. SILICON 14:10391–10399. https://doi.org/10.1007/s12633-022-01801-9

    Article  CAS  Google Scholar 

  45. Almuqrin AH, Mahmoud KA, Wahab EAA, Koubisy MSI, Sayyed MI, Shaaban KS (2021) Structural, mechanical, and nuclear radiation shielding properties of iron aluminoleadborate glasses. Eur Phys J Plus 136 (6). https://doi.org/10.1140/epjp/s13360-021-01564-z

  46. Alothman MA, Alrowaili ZA, Alzahrani JS, Wahab EAA, Olarinoye IO, Sriwunkum C, Shaaban KS, Al-Buriahi MS (2021) Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. J Alloy Compd 882:160625. https://doi.org/10.1016/j.jallcom.2021.160625

    Article  CAS  Google Scholar 

  47. Shaaban KS, Basha B, Alrowaili ZA, Al-Buriahi MS, Abdel Wahab EA (2023) A closer inspection of the structural, mechanical, optical and radiation shielding properties of GeO2-doped magnesium-telluroborate glasses. Radiochim Acta 111(9):713–724. https://doi.org/10.1515/ract-2023-0140

  48. Arun K (1994) Varshneya, Fundamentals of Inorganic Glasses, Gulf Professional Publishing P,33

  49. Makishima A, Mackenzie JD (1975) Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J Non-Cryst Solids 17(2):147–157. https://doi.org/10.1016/0022-3093(75)90047-2

    Article  CAS  Google Scholar 

  50. Makishima A, Mackenzie JD (1973) Direct calculation of Young’s moidulus of glass. J Non-Cryst Solids 12(1):35–45. https://doi.org/10.1016/0022-3093(73)90053-7

    Article  CAS  Google Scholar 

  51. Al-Baradi AM, El-Rehim AFA, Alrowaili ZA, Al-Buriahi MS, Shaaban KS (2021) FT-IR and Gamma Shielding Characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5–x) LiF- x BaO Glasses. SILICON 14(12):7043–7051. https://doi.org/10.1007/s12633-021-01481-x

    Article  CAS  Google Scholar 

  52. Wahab EAA, Al-Baradi AM, Sayed MA et al (2022) Crystallization and Radiation Proficiency of Transparent Sodium Silicate Glass Doped Zirconia. SILICON 14:8581–8597. https://doi.org/10.1007/s12633-021-01652-w

    Article  CAS  Google Scholar 

  53. Sayed MA, Basha B, Al-Harbi N et al (2023) PbO effect on physical, mechanical, optical, structural, and radiation characteristics of P2O5-BaO-PbO glass system. Eur Phys J Plus 138:455. https://doi.org/10.1140/epjp/s13360-023-04079-x

    Article  CAS  Google Scholar 

  54. El-Taher A, Zakaly HMH, Pyshkina M, Allam EA, El-Sharkawy RM, Mahmoud ME, Abdel-Rahman MAE (2021) A comparative Study Between Fluka and Microshield Modeling Calculations to study the Radiation-Shielding of Nanoparticles and Plastic Waste composites, Zeitschrift Fur Anorg. Und Allg. Chemie 647:1083–1090. https://doi.org/10.1002/zaac.202100062

    Article  CAS  Google Scholar 

  55. Henaish AMA, Mostafa M, Salem BI, Zakaly HMH, Issa SAM, Weinstein IA, Hemeda OM (2020) Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites. J Mater Sci Mater Electron 31:20210–20222. https://doi.org/10.1007/s10854-020-04541-x

    Article  CAS  Google Scholar 

  56. Zakaly HMH, Uosif MAM, Issa SAM, Tekin HO, Madkour H, Tammam M, El-Taher A, Alharshan GA, Mostafa MYA (2021) An extended assessment of natural radioactivity in the sediments of the mid-region of the Egyptian Red Sea coast. Mar Pollut Bull 171:112658. https://doi.org/10.1016/J.MARPOLBUL.2021.112658

    Article  CAS  PubMed  Google Scholar 

  57. Tekin HO, Issa SAM, Kilic G, Zakaly HMH, Tarhan N, Sidek HAA, Matori KA, Zaid MHM (2021) A systematical characterization of teo2–v2o5 glass system using boron (Iii) oxide and neodymium (iii) oxide substitution: Resistance behaviors against ionizing radiation. Appl Sci 11:3035. https://doi.org/10.3390/app11073035

    Article  CAS  Google Scholar 

  58. Almisned G, Elshami W, Issa SAM, Susoy G, Zakaly HMH, Algethami M, Rammah YS, Ene A, Al-Ghamdi SA, Ibraheem AA, Tekin HO (2021) Enhancement of gamma-ray shielding properties in cobalt-doped heavy metal borate glasses: The role of lanthanum oxide reinforcement. Materials (Basel) 14:7703. https://doi.org/10.3390/ma14247703

    Article  CAS  PubMed  Google Scholar 

  59. Zakaly HMH, Issa SAM, Tekin HO, Badawi A, Saudi HA, Henaish AMA, Rammah YS (2022) An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance. Mater Res Bull 111828. https://doi.org/10.1016/j.materresbull.2022.111828

  60. Tekin HO, ALMisned G, Zakaly HMH, Zamil A, Khoucheich D, Bilal G, Al-Sammarraie L, Issa SAM, Al-Buriahi MS, Ene A (2022) Gamma, neutron, and heavy charged ion shielding properties of Er3+-doped and Sm3+-doped zinc borate glasses. Open Chem 20 130–145. https://doi.org/10.1515/CHEM-2022-0128

  61. Zakaly HM, Abouhaswa AS, Issa SAM, Mostafa MYA, Pyshkina M, El-Mallawany R (2020) Optical and nuclear radiation shielding properties of zinc borate glasses doped with lanthanum oxide. J Non Cryst Solids 543:120151. https://doi.org/10.1016/j.jnoncrysol.2020.120151

    Article  CAS  Google Scholar 

  62. Zakaly HMH, Issa SAM, Saudi HA, Alharshan GA, Uosif MAM, Henaish AMA (2022) Structure, Mössbauer, electrical, and γ-ray attenuation-properties of magnesium zinc ferrite synthesized co-precipitation method. Sci Rep 12:1–16. https://doi.org/10.1038/s41598-022-17311-y

    Article  CAS  Google Scholar 

  63. Kaky KM, Sayyed M, Khammas A, Kumar A, Şakar E, Abdalsalam AH, Cevi̇z Şakar, B., Alim, B., & Mhareb, M. (2020) Theoretical and experimental validation gamma shielding properties of B2O3–ZnO–MgO–Bi2O3 glass system. Mater Chem Phys 242:122504. https://doi.org/10.1016/j.matchemphys.2019.122504

    Article  CAS  Google Scholar 

  64. Lakshminarayana G, Sayyed MI, Baki SO et al (2018) Optical absorption and gamma-radiation-shielding parameter studies of Tm3+-doped multicomponent borosilicate glasses. Appl Phys A 124:378. https://doi.org/10.1007/s00339-018-1801-4

    Article  CAS  Google Scholar 

  65. Kaky KM, Şakar E, Akbaba U, Emre Kasapoğlu A, Sayyed M, Gür E, Baki S, Mahdi M (2019) X-ray photoelectron spectroscopy (XPS) and gamma-ray shielding investigation of boro-silicate glasses contained alkali/alkaline modifier. Results in Physics 14:102438. https://doi.org/10.1016/j.rinp.2019.102438

    Article  Google Scholar 

  66. Mhareb M, Alqahtani M, Alajerami Y, Alshahri F, Sayyed M, Mahmoud K, Saleh N, Alonizan N, Al-Buriahi M, Kaky KM (2021) Ionizing radiation shielding features for titanium borosilicate glass modified with different concentrations of barium oxide. Mater Chem Phys 272:125047. https://doi.org/10.1016/j.matchemphys.2021.125047

    Article  CAS  Google Scholar 

  67. Hassib MD, Kaky KM, Kumar A, Şakar E, Sayyed M, Baki S, Mahdi M (2019) Boro-silicate glasses co-doped Er+3/Yb+3 for optical amplifier and gamma radiation shielding applications. Physica B 567:37–44. https://doi.org/10.1016/j.physb.2019.05.006

    Article  CAS  Google Scholar 

  68. Kaky, Kawa M. Lakshminarayana G, Baki SO, Halimah MK, Mahdi M A (2017) Structural, thermal and optical studies of bismuth doped multicomponent tellurite glass. Solid State Phenomena 268: 165-171. ISSN 1012–0394; ESSN: 1662–9779. https://doi.org/10.4028/www.scientific.net/SSP.268.165

  69. Lakshminarayana G, Kaky KM, Jedryka J, El-Naggar A, Albassam A, Myronchuk G, Mahdi M (2016) Laser induced elastooptics in novel Bi2O3, and Pr2O3 doped tellurite rich glasses. Mater Lett 183:322–324. https://doi.org/10.1016/j.matlet.2016.07.129

    Article  CAS  Google Scholar 

  70. Kaky KM, Sayyed M (2024) Selected germanate glass systems with robust physical features for radiation protection material use. Radiat Phys Chem 215:111321. https://doi.org/10.1016/j.radphyschem.2023.111321

    Article  CAS  Google Scholar 

  71. Kaky KM, Sayyed M, Mhareb M, Abbas HH, Baki S (2023) Physical, structural, mechanical, and various radiation shielding properties of TeO2-GeO2-ZnO-Al2O3-Li2O-M (M= WO3, MoO3, PbO, and CuO) glasses. Opt Mater 145:114370

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman

University Researchers Supporting Project number (PNURSP2024R57), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

Kh. S. Shaaban, wrote the main manuscript text and prepared figures, Dalal Abdullah Aloraini, methodology, writing the manuscript, reviews the manuscript, E.A.Abdel Wahab methodology, writing the manuscript, reviews the manuscript, Ali S. Alzahrani, methodology, writing the manuscript, reviews the manuscript.

Corresponding author

Correspondence to Kh. S. Shaaban.

Ethics declarations

Ethics Approval and Consent to Participate

The manuscript has not been published.

Consent to Participate and Publication

The authors consent to participate and publish.

Informed Consent

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, A.S., Aloraini, D.A., Wahab, E.A.A. et al. Investigation of the Structural, Elastic, and Radiation Shielding Properties of the SiO2 –Pb3O4–ZnO –Y2O3 Glass System. Silicon 16, 2401–2413 (2024). https://doi.org/10.1007/s12633-024-02846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-024-02846-8

Keywords

Navigation