Skip to main content
Log in

Hydroxyl Radical Scavenging of Liquid Silicone Rubber/Ce0.5Zr0.5O2 Nanocomposites for Local Delivery of Antioxidants to Control Oxidative Stress Induced Damages

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Local administration of drug effectively following cochlear implantation is highly challenging, which imposes limitations such as insufficient drug, poor distribution and need for additional surgical procedures. Recent research is focused on integrating the drug with the silicone encasing of the electrode in cochlear implanted patients to overcome these limitations. The objective of the study is to assess the delivery of Ce0.5Zr0.5O2 antioxidant through silicone encasing and the suitability of the nanocomposites as an electrode encasing material. The proposed strategy is expected to overcome the issues associated with poor dispersion stability of the Ce0.5Zr0.5O2 based nanofluid and its corresponding long term effect, while utilizing its regenerative ability. Liquid silicone rubber (LSR)/Ce0.5Zr0.5O2 nanocomposites are prepared and characterized using suitable techniques. The reinforcement of nanoparticles up to 5 wt.% did not affect the modulus and electrical conductivity significantly. The hydroxyl radicals are scavenged by 36% in artificial perilymph fluid. The Ce3+ concentration is reduced from 45 to 9% after adding H2O2 and then it is regenerated to 35% after 13 days due to its ability to switch between Ce3+ and Ce4+. From this study, LSR/ Ce0.5Zr0.5O2 nanocomposites are proposed as electrode encasing material inside cochlea for scavenging hydroxyl radicals and its regeneration potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data are available from the corresponding author upon request.

References

  1. Wulf K, Goblet M, Raggl S, Teske M, Eickner T, Lenarz T, Grabow N, Paasche G (2022) PLLA Coating of Active Implants for Dual Drug Release. Molecules 27(4):1–15

    Article  Google Scholar 

  2. Briggs R, O’Leary S, Birman C, Plant K, English R, Dawson P, Risi F, Gavrilis J, Needham K, Cowan R (2020) Comparison of Electrode Impedance Measures between a Dexamethasone-Eluting and Standard CochlearTM Contour Advance® Electrode in Adult Cochlear Implant Recipients. Hear Res. 390:107924

    Article  PubMed  Google Scholar 

  3. Bas E, Bohorquez J, Goncalves S, Perez E, Dinh CT, Garnham C, Hessler R, Eshraghi AA, Van de Water TR (2016) Electrode Array-Eluted Dexamethasone Protects against Electrode Insertion Trauma Induced Hearing and Hair Cell Losses, Damage to Neural Elements, Increases in Impedance and Fibrosis: A Dose Response Study. Hear Res 337:12–24

    Article  CAS  PubMed  Google Scholar 

  4. Eshraghi AA, Wolfovitz A, Yilmazer R, Garnham C, Yilmazer AB, Bas E, Ashman P, Roell J, Bohorquez J, Mittal R, Hessler R, Sieber D, Mittal J (2019) Otoprotection to Implanted Cochlea Exposed to Noise Trauma With Dexamethasone Eluting Electrode. Front Cell Neurosci 13(November):1–11

    Google Scholar 

  5. Toulemonde P, Risoud M, Lemesre PE, Beck C, Wattelet J, Tardivel M, Siepmann J, Vincent C (2021) Evaluation of the efficacy of dexamethasone-eluting electrode array on the post-implant cochlear fibrotic reaction by three-dimensional immunofluorescence analysis in Mongolian gerbil cochlea. J Clin Med 10(15):3315. https://doi.org/10.3390/jcm10153315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manrique-Huarte R, de Linera-Alperi MA, Parilli D, Rodriguez JA, Borro D, Dueck WF, Smyth D, Salt A, Manrique M (2021) Inner Ear Drug Delivery through a Cochlear Implant: Pharmacokinetics in a Macaque Experimental Model. Hear Res 404:108228

    Article  CAS  PubMed  Google Scholar 

  7. Xu M, Ma D, Chen D, Cai J, He Q, Shu F, Tang J, Zhang H (2018) Preparation, Characterization and Application Research of a Sustained Dexamethasone Releasing Electrode Coating for Cochlear Implantation. Mater Sci Eng C 90(April):16–26

    Article  CAS  Google Scholar 

  8. Luo Y, Chen A, Xu M, Chen D, Tang J, Ma D, Zhang H (2021) Preparation, Characterization, and in Vitro/Vivo Evaluation of Dexamethasone/Poly(ε-Caprolactone)-Based Electrode Coatings for Cochlear Implants. Drug Deliv 28(1):1673–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richardson RT, Wise AK, Thompson BC, Flynn BO, Atkinson PJ, Fretwell NJ, Fallon JB, Wallace GG, Shepherd RK, Clark GM, O’Leary SJ (2009) Polypyrrole-Coated Electrodes for the Delivery of Charge and Neurotrophins to Cochlear Neurons. Biomaterials 30(13):2614–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen D, Luo Y, Pan J, Chen A, Ma D, Xu M, Tang J, Zhang H (2021) Long-Term Release of Dexamethasone With a Polycaprolactone-Coated Electrode Alleviates Fibrosis in Cochlear Implantation. Front Cell Dev Biol 9(October):1–15

    Google Scholar 

  11. Wrzeszcz A, Dittrich B, Haamann D, Aliuos P, Klee D, Nolte I, Lenarz T, Reuter G (2014) Dexamethasone released from cochlear implant coatings combined with a protein repellent hydrogel layer inhibits fibroblast proliferation. J Biomed Mater Res A 102(2):442–454. https://doi.org/10.1002/jbm.a.34719

    Article  CAS  PubMed  Google Scholar 

  12. Evans AJ, Thompson BC, Wallace GG, Millard R, O'Leary SJ, Clark GM, Shepherd RK, Richardson RT (2009) Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes. J Biomed Mater Res A 91(1):241–250. https://doi.org/10.1002/jbm.a.32228

    Article  CAS  PubMed  Google Scholar 

  13. Wilk M, Hessler R, Mugridge K, Jolly C, Fehr M, Lenarz T, Scheper V (2016) Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode. PLoS ONE 11(2):1–12

    Article  Google Scholar 

  14. Soh M, Kang D, Jeong H, Kim D, Kim DY, Yang W, Song C, Baik S, Choi I, Ki S, Kwon HJ, Kim T, Kim CK, Lee S, Hyeon T (2017) Ceria – Zirconia Nanoparticles as an Enhanced Multi-Antioxidant for Sepsis Treatment. Angew Chem Int Ed 56:11399–11403

    Article  CAS  Google Scholar 

  15. Hyeon TH, Lee SH, Soh M, Kim CK (2017) Synthesis of ultra-small ceria-zirconia nanoparticles and ceria-zirconia nano complex and its application as a theraputic agent for sepsis. Patent No: US2017/0312313A1

  16. Rai N, Kanagaraj S (2022) Enhanced Antioxidant Ability of PEG-Coated Ce0.5Zr0.5O2-Based Nanofluids for Scavenging Hydroxyl Radicals. Pdf. ACS Omega 7:22363–22376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rai N, Raj R, Kanagaraj S (2019) Radical Scavenging of Nanoceria in Minimizing the Oxidative Stress-Induced Loss of Residual Hearing: A Review. J Indian Inst Sci 99(3):529–545

    Article  Google Scholar 

  18. Tsai YY, Oca-Cossio J, Lin SM, Woan K, Yu PC, Sigmund W (2008) Reactive Oxygen Species Scavenging Properties of ZrO2-CeO2 Solid Solution Nanoparticles. Nanomedicine 3(5):637–645

    Article  CAS  PubMed  Google Scholar 

  19. Dziembaj R, Molenda M, Chmielarz L (2023) Synthesis and specific properties of the ceria and ceria-zirconia nanocrystals and their aggregates showing outstanding catalytic activity in redox reactions—A review. Catalysts 13(8):1165. https://doi.org/10.3390/catal13081165

    Article  CAS  Google Scholar 

  20. Shah PM, Burnett JWH, Morgan DJ, Davies TE, Taylor SH (2019) Ceria–zirconia mixed metal oxides prepared via mechanochemical grinding of carbonates for the total oxidation of propane and naphthalene. Catalysts 9(5):475. https://doi.org/10.3390/catal9050475

    Article  CAS  Google Scholar 

  21. Rechniqueseddy BM, Khan A, Lakshmanan P, Aouine M, Loridant S, Volta JC (2005) Structural Characterization of Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 Catalysts by XRD, Raman, and HREM T. J Phys Chem B 109(8):3355–3363

    Article  Google Scholar 

  22. Priya NS, Somayaji C, Kanagaraj S (2013) Optimization of Ceria-Zirconia Solid Solution Based on OSC Measurement by Cyclic Heating Process. Procedia Eng 64:1235–1241

    Article  CAS  Google Scholar 

  23. Aneggi E, Trovarelli A (2020) Potential of ceria-zirconia-based materials in carbon soot oxidation for gasoline particulate filters. Catalysts 10(7):768. https://doi.org/10.3390/catal10070768

    Article  CAS  Google Scholar 

  24. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Auto-Catalytic Ceria Nanoparticles Offer Neuroprotection to Adult Rat Spinal Cord Neurons. Biomaterials 28(10):1918–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nourmohammadi E, Khoshdel-sarkarizi H, Nedaeinia R, Darroudi M, KazemiOskuee R (2020) Cerium Oxide Nanoparticles: A Promising Tool for the Treatment of Fibrosarcoma in-Vivo. Mater Sci Eng C 109(December 2019):110533

    Article  CAS  Google Scholar 

  26. Könen-Adıgüzel S, Ergene S (2018) In vitro evaluation of the genotoxicity of CeO2 nanoparticles in human peripheral blood lymphocytes using cytokinesis-block micronucleus test, comet assay, and gamma H2AX. Toxicol Ind Health 34(5):293–300. https://doi.org/10.1177/0748233717753780

    Article  CAS  PubMed  Google Scholar 

  27. Kaur J, Khatri M, Puri S (2019) Toxicological Evaluation of Metal Oxide Nanoparticles and Mixed Exposures at Low Doses Using Zebra Fish and THP1 Cell Line. Environ Toxicol 34(4):375–387

    Article  CAS  PubMed  Google Scholar 

  28. Ouyang G, Wang K, Chen XY (2012) TiO2 nanoparticles modified polydimethylsiloxane with fast response time and increased dielectric constant. J Micromech Microeng 22(7):074002. https://doi.org/10.1088/0960-1317/22/7/074002

    Article  CAS  Google Scholar 

  29. Liu J, Yao Y, Chen S, Li X, Zhang Z (2021) A New Nanoparticle-Reinforced Silicone Rubber Composite Integrating High Strength and Strong Adhesion. Compos Part A Appl Sci Manuf 151(June):106645

    Article  CAS  Google Scholar 

  30. Xia L, Xu Z, Sun L, Caveney PM, Zhang M (2013) Nano-Fillers to Tune Young’s Modulus of Silicone Matrix. J Nanoparticle Res. 15(4):0–11

    Article  Google Scholar 

  31. Kumar V, Kumar A, Song M, Lee DJ, Han SS, Park SS (2021) Properties of Silicone Rubber-Based Composites Reinforced with Few-Layer Graphene and Iron Oxide or Titanium Dioxide. Polymers (Basel) 13(10):1–17

    Article  Google Scholar 

  32. Lim YS, Park SI, Kim YH, Oh SH, Kim SJ (2005) Three-Dimensional Analysis of Electrode Behavior in a Human Cochlear Model. Med Eng Phys 27(8):695–703

    Article  PubMed  Google Scholar 

  33. Hanekom T, Hanekom JJ (2016) Three-Dimensional Models of Cochlear Implants: A Review of Their Development and How They Could Support Management and Maintenance of Cochlear Implant Performance. Netw Comput Neural Syst 27(2–3):67–106

    Article  Google Scholar 

  34. Beerling T, Chuladatta T (2011) Cochlear electrode array. Patent No: WO2011075480A2

  35. Helbig S, Van De Heyning P, Kiefer J, Baumann U, Kleine-Punte A, Brockmeier H, Anderson I, Gstoettner W (2011) Combined Electric Acoustic Stimulation with the PULSARCI100 Implant System Using the FLEXEAS Electrode Array. Acta Otolaryngol 131(6):585–595

    Article  PubMed  Google Scholar 

  36. Fang Y-Z, Yang S, Wu G (2002) Free Radicals, Antioxidants, and Nutrition. Nutrition 18(10):872–879

    Article  CAS  PubMed  Google Scholar 

  37. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological Potential of Cerium Oxide Nanoparticles. Nanoscale 3(4):1411

    Article  CAS  PubMed  Google Scholar 

  38. Kumar V, Alam MN, Manikkavel A, Song M, Lee D-J, Park S-S (2021) Silicone rubber composites reinforced by carbon nanofillers and their hybrids for various applications: A review. Polymers 13(14):2322. https://doi.org/10.3390/polym13142322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Azimzadeh JB, Salvi JD (2017) Physiological Preparation of Hair Cells from the Sacculus of the American Bullfrog (Rana Catesbeiana). J Vis Exp 121:1–10

    Google Scholar 

  40. Vaimakis-Tsogkas DT, Bekas DG, Giannakopoulou T, Todorova N, Paipetis AS, Barkoula NM (2019) Effect of TiO2 Addition/Coating on the Performance of Polydimethylsiloxane-Based Silicone Elastomers for Outdoor Applications. Mater Chem Phys. 223(September 2018):366–373

    Article  CAS  Google Scholar 

  41. Lu M, Zhang Y, Wang Y, Jiang M, Yao X (2016) Insight into Several Factors That Affect the Conversion between Antioxidant and Oxidant Activities of Nanoceria. ACS Appl Mater Interfaces 8(36):23580–23590

    Article  CAS  PubMed  Google Scholar 

  42. Iacob M, Airinei A, Asandulesa M, Dascalu M, Tudorachi N, Hernandez L, Cazacu M (2020) Silicone elastomers filled with rare earth oxides. Mater Res Express 7(3):035703. https://doi.org/10.1088/2053-1591/ab7a5e

    Article  CAS  Google Scholar 

  43. Liu P, Li L, Wang L, Huang T, Yao Y, Xu W (2019) Effects of 2D Boron Nitride (BN) Nanoplates Filler on the Thermal, Electrical, Mechanical and Dielectric Properties of High Temperature Vulcanized Silicone Rubber for Composite Insulators. J Alloys Compd 774:396–404

    Article  CAS  Google Scholar 

  44. Snorradóttir BS, Gudnason PI, Scheving R, Thorsteinsson F, Másson M (2009) Release of Anti-Inflammatory Drugs from a Silicone Elastomer Matrix System. Pharmazie 64(1):19–25

    PubMed  Google Scholar 

  45. Lazanas AC, Prodromidis MI (2023) Electrochemical impedance spectroscopy─a tutorial. ACS Meas Sci Au 3(3):162–193. https://doi.org/10.1021/acsmeasuresciau.2c00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L, Deng H, Fu Q (2018) Recent Progress on Thermal Conductive and Electrical Insulating Polymer Composites. Compos Commun 8(November):74–82

    Article  Google Scholar 

  47. Chiu H, Liu Y, Lin C, Shong Z, Tsai P (2013) Thermal conductivity and electrical conductivity of silicone rubber filled with aluminum nitride and aluminum powder. J Polym Eng 33(6):545–549. https://doi.org/10.1515/polyeng-2013-0025

    Article  CAS  Google Scholar 

  48. Xue Y, Luan Q, Yang D, Yao X, Zhou K (2011) Direct Evidence for Hydroxyl Radical Scavenging Activity of Cerium Oxide Nanoparticles. J Phys Chem C 115:4433–4438

    Article  CAS  Google Scholar 

  49. Heckert EG, Karakoti AS, Seal S, Self WT (2008) The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. Biomaterials 29(18):2705–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu C, Qu X (2014) Cerium Oxide Nanoparticle: A Remarkably Versatile Rare Earth Nanomaterial for Biological Applications. NPG Asia Mater 6(3):e90–e16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution from Central Instrument Facility, IIT Guwahati, for UTM and XPS instruments. The authors acknowledge the support provided by North East Centre for Biological Sciences and Healthcare Engineering (NECBH), IIT Guwahati (BT/COE/34/SP28408/2018).

Funding

The authors acknowledge the kind financial support by Department of Biotechnology, (Sanction Number BT/PR16998/NER/95/449/2015, Project Title: Preservation of residual hearing by localized delivery of nanoceria based solid solution and composite as an antioxidant in cochlear implants), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to S. Kanagaraj.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, N., Kanagaraj, S. Hydroxyl Radical Scavenging of Liquid Silicone Rubber/Ce0.5Zr0.5O2 Nanocomposites for Local Delivery of Antioxidants to Control Oxidative Stress Induced Damages. Silicon 16, 2497–2508 (2024). https://doi.org/10.1007/s12633-024-02845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-024-02845-9

Keywords

Navigation