Skip to main content
Log in

Design and Analysis of Si/GaSb HTFET-Based 7T SRAM Cell for Ultra-Low Voltage Applications

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study introduces a novel double-dielectric Si/GaSb heterojunction TFET, incorporating III-V material in the pockets and source region to enhance band-to-band tunneling. Utilizing a high-\(\kappa \) dielectric in conjunction with \(\varvec{SiO_2}\) as a gate oxide, the proposed TFET demonstrates notable advancements, including an 81% reduction in OFF-current and a substantial 1.58-decade enhancement in ON-current. However, a moderate 30% increase in the average subthreshold swing is observed compared to the referenced pocket-based GaSb/Si VTFET. The RF characteristics reveal a significant 1.62-decade increase in transconductance and a 1.8-decade increase in output conductance, coupled with impressive cut-off frequency and gain-bandwidth product relative to the same reference. Additionally, the study implements a 7T SRAM cell at the device-to-circuit level through a lookup table-based Verilog-A methodology. It showcases higher noise margins and lower delays, rendering it suitable for ultra-low voltage applications requiring high-speed performance and enhanced stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No associated data.

References

  1. Qazi M, Sinangil M, Chandrakasan A (2010) Challenges and directions for low-voltage SRAM. IEEE Des Test Comput 28(1):32–43. https://doi.org/10.1109/MDT.2010.115

    Article  Google Scholar 

  2. Veeraraghavan S, Fossum JG (1989) Short-channel effects in SOI MOSFETs. IEEE Trans Electron Devices 36(3):522–528. https://doi.org/10.1109/16.19963

    Article  Google Scholar 

  3. Hisamoto D, Lee W-C, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King T-J, Bokor J, Hu C (2000) FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47(12):2320–2325. https://doi.org/10.1109/16.887014

    Article  CAS  Google Scholar 

  4. Kim YB, Kim Y-B, Lombardi F (2009) A novel design methodology to optimize the speed and power of the CNTFET circuits. In: 2009 52nd IEEE international midwest symposium on circuits and systems, pp 1130–1133. https://doi.org/10.1109/MWSCAS.2009.5235967

  5. Memišević E, Svensson J, Lind E, Wernersson L-E (2016) InAs/GaSb vertical nanowire TFETs on Si for digital and analogue applications. In: 2016 IEEE silicon nanoelectronics workshop (SNW), pp 154–155. https://doi.org/10.1109/SNW.2016.7578029

  6. Sanapala K, Satyanarayana S, Sakthivel R (2021) Near-zero computing using NCFET for IoT applications. Int J Intell Enterp 8(2–3):288–295. https://doi.org/10.1504/IJIE.2021.114514

    Article  Google Scholar 

  7. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373):329–337. https://doi.org/10.1038/nature10679

    Article  CAS  PubMed  Google Scholar 

  8. Seabaugh AC, Zhang Q (2010) Low-Voltage Tunnel Transistors for Beyond CMOS Logic. Proc IEEE 98(12):2095–2110. https://doi.org/10.1109/JPROC.2010.2070470

    Article  CAS  Google Scholar 

  9. Gadarapulla R, Sriadibhatla S (2021) Tunnel FET based SRAM cells–a comparative review. In: Microelectronic devices, circuits and systems: second international conference, ICMDCS 2021, Vellore, India, February 11-13, 2021, Revised Selected Papers 2, pp 217–228. https://doi.org/10.1007/978-981-16-5048-2_17

  10. Shao Y, Alamo JA (2022) Sub-10-nm diameter vertical nanowire p-type GaSb/InAsSb tunnel FETs. IEEE Electron Device Lett 43(6):846–849. https://doi.org/10.1109/LED.2022.3166846

    Article  CAS  Google Scholar 

  11. Convertino C, Zota CB, Schmid H, Caimi D, Czornomaz L, Ionescu AM, Moselund KE (2021) A hybrid III-V tunnel FET and MOSFET technology platform integrated on silicon. Nat Electron 4(2):162–170. https://doi.org/10.1038/s41928-020-00531-3

    Article  CAS  Google Scholar 

  12. Li W, Woo JC (2020) Vertical P-TFET with a P-type SiGe pocket. IEEE Trans Electron Devices 67(4):1480–1484. https://doi.org/10.1109/TED.2020.2971475

    Article  CAS  Google Scholar 

  13. Cheng W, Liang R, Xu G, Yu G, Zhang S, Yin H, Zhao C, Ren T-L, Xu J (2020) Fabrication and characterization of a novel Si line tunneling TFET with high drive current. IEEE J Electron Devices Soc 8:336–340. https://doi.org/10.1109/JEDS.2020.2981974

    Article  CAS  Google Scholar 

  14. Guan Y, Dou Z, Lu J, Huang S, Chen H (2023) An accurate and full-range analytical current model for nanowire heterojunction TFET. IEEE Trans Electron Devices 70(11):6004–6011. https://doi.org/10.1109/TED.2023.3312625

    Article  CAS  Google Scholar 

  15. Saurabh S, Kumar MJ (2016). Fundamentals of tunnel field-effect transistors, 1st edn. CRC press, Boca Raton. https://doi.org/10.1201/9781315367354

  16. Choi WY, Park B-G, Lee JD, Liu T-JK (2007) Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28(8):743–745. https://doi.org/10.1109/LED.2007.901273

    Article  CAS  Google Scholar 

  17. Krishnamohan T, Kim D, Raghunathan S, Saraswat K (2008) Double-gate strained-ge heterostructure tunneling FET (TFET) with record high drive currents and \(\ll \)60mV/dec subthreshold slope. In: 2008 IEEE international electron devices meeting, pp 1–3. https://doi.org/10.1109/IEDM.2008.4796839

  18. Saurabh S, Kumar MJ (2010) Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Devices 58(2):404–410. https://doi.org/10.1109/TED.2010.2093142

    Article  CAS  Google Scholar 

  19. Vanlalawpuia K, Bhowmick B (2019) Investigation of a Ge-source vertical TFET with delta-doped layer. IEEE Trans Electron Devices 66(10):4439–4445. https://doi.org/10.1109/TED.2019.2933313

    Article  Google Scholar 

  20. Ahmad SA, Alam N (2019) Performance improvement of tunnel field effect transistor using double pocket. J Nanoelectron Optoelectron 14(8):1148–1157. https://doi.org/10.1166/jno.2019.2648

    Article  CAS  Google Scholar 

  21. Madan J, Chaujar R (2017) Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance. Superlattice Microst 102:17–26. https://doi.org/10.1016/j.spmi.2016.12.034

    Article  CAS  Google Scholar 

  22. Rasheed G, Sridevi S (2022) Design and analysis of a dual gate tunnel FET with InGaAs source pockets for improved performance. Microelectron J 129:105587. https://doi.org/10.1016/j.mejo.2022.105587

    Article  CAS  Google Scholar 

  23. Rasheed G, Sridevi S (2023) Design of 7T SRAM using InGaAs-dual pocket-dual gate-tunnel FET for IoT applications. IEEE Access 11:76034–76045. https://doi.org/10.1109/ACCESS.2023.3296803

    Article  Google Scholar 

  24. Kumar TS, Tripathi SL (2021) Leakage reduction in 18 nm FinFET based 7T SRAM cell using self controllable voltage level technique. Wirel Pers Commun 116(3):1837–1847. https://doi.org/10.1007/s11277-020-07765-6

    Article  Google Scholar 

  25. Kumar TS, Tripathi SL (2021) Process evaluation in FinFET based 7T SRAM cell. Analog Integr Circ Sig Process 109(3):545–551. https://doi.org/10.1007/s10470-021-01938-4

    Article  Google Scholar 

  26. Satti VS, Sriadibhatla S (2021) Dual bit control low-power dynamic content addressable memory design for IoT applications. Turk J Electr Eng Comput Sci 29(2):1274–1283. https://doi.org/10.3906/elk-1907-71

    Article  Google Scholar 

  27. Tripathy MR, Singh AK, Samad A, Chander S, Baral K, Singh PK, Jit S (2020) Device and circuit-level assessment of GaSb/Si heterojunction vertical tunnel-FET for low-power applications. IEEE Trans Electron Devices 67(3):1285–1292. https://doi.org/10.1109/TED.2020.2964428

    Article  CAS  Google Scholar 

  28. Luisier M (2011) Performance comparison of GaSb, strained-Si, and InGaAs double-gate ultrathin-body n-FETs. IEEE Electron Device Lett 32(12):1686–1688. https://doi.org/10.1109/LED.2011.2168377

    Article  CAS  Google Scholar 

  29. Nagavarapu V, Jhaveri R, Woo JC (2008) The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans Electron Devices 55(4):1013–1019. https://doi.org/10.1109/TED.2008.916711

    Article  CAS  Google Scholar 

  30. Chusovitin E, Dotsenko S, Chusovitina S, Goroshko D, Gutakovskii A, Subbotin E, Galkin K, Galkin N (2018) Formation of a thin continuous GaSb film on Si (001) by solid phase epitaxy. Nanomaterials 8(12):987. https://doi.org/10.3390/nano8120987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goroshko DL, Chusovitin EA, Chernev IM, Shevlyagin AV, Galkin KN, Galkin NG (2017) Solid phase epitaxy formation of silicon-GaSb based heterostructures. In: JJAP Conference proceedings asia-pacific conference on semiconducting silicides and related materials-science and technology towards sustainable electronics (APAC Silicide 2016). The Japan Society of Applied Physics, pp 011108–011108

  32. Song S, Lønsethagen K, Laurell F, Hawkins T, Ballato J, Fokine M, Gibson UJ (2019) Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres. Nat Commun 10(1):1790. https://doi.org/10.1038/s41467-019-09835-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morkoc H, Drummond T, Omori M (1982) GaAs MESFET’s by molecular beam epitaxy. IEEE Trans Electron Devices 29(2):222–224. https://doi.org/10.1109/T-ED.1982.20688

    Article  Google Scholar 

  34. Cho A (1971) Film deposition by molecular-beam techniques(Thin single crystalline film deposition by molecular beam epitaxy of GaAs, describing surface structure observation with high energy electron diffraction). J Vac Sci Technol 8. https://doi.org/10.1116/1.1316387

  35. Subbanna S, Tuttle G, Kroemer H (1988) N-type doping of gallium antimonide and aluminum antimonide grown by molecular beam epitaxy using lead telluride as a tellurium dopant source. J Elec Materi 17:297–303. https://doi.org/10.1007/BF02652109

    Article  CAS  Google Scholar 

  36. Longenbach K, Xin S, Wang W (1991) p-type doping of GaSb by Ge and Sn grown by molecular beam epitaxy. J Appl Phys 69(5):3393–3395. https://doi.org/10.1063/1.348518

    Article  CAS  Google Scholar 

  37. Rossi T, Collins D, Chow D, McGill T (1990) p-type doping of gallium antimonide grown by molecular beam epitaxy using silicon. Appl Phys Lett 57(21):2256–2258. https://doi.org/10.1063/1.103907

    Article  CAS  Google Scholar 

  38. Joshi T, Singh Y, Singh B (2020) Extended-source double-gate tunnel FET with improved DC and analog/RF performance. IEEE Trans Electron Devices 67(4):1873–1879. https://doi.org/10.1109/TED.2020.2973353

    Article  CAS  Google Scholar 

  39. Arafin S, Bachmann A, Kashani-Shirazi K, Priyabadini S, Amann M (2009) Low-resistive ohmic contacts to n-\(InAs_{0.91}Sb_{0.09}\) for GaSb-based VCSELs in the mid-infrared range. In: Semiconductor and integrated optoelectronic conference, Cardiff

  40. Morris DH, Avci UE, Rios R, Young IA (2014) Design of low voltage tunneling-FET logic circuits considering asymmetric conduction characteristics. IEEE J Emerg Sel Topics Circuits Syst 4(4):380–388. https://doi.org/10.1109/JETCAS.2014.2361054

  41. Pandey CK, Dash D, Chaudhury S (2018) Impact of dielectric pocket on analog and high-frequency performances of cylindrical gate-all-around tunnel FETs. ECS J Solid State Sci Technol 7(5):59. https://doi.org/10.1149/2.0101805jss

    Article  CAS  Google Scholar 

  42. Ahmad S, Ahmad SA, Muqeem M, Alam N, Hasan M (2019) TFET-based robust 7T SRAM cell for low power application. IEEE Trans Electron Devices 66(9):3834–3840. https://doi.org/10.1109/TED.2019.2931567

    Article  CAS  Google Scholar 

  43. Kujur KS, Rasheed G, Sridevi S (2022) InGaAs-Si double pocket-dual gate tunnel FET based 7T SRAM design. Silicon 14(15):10087–10099. https://doi.org/10.1007/s12633-022-01737-0

    Article  CAS  Google Scholar 

  44. Ramkumar K, Ramakrishnan V (2022) Performance analysis of germanium-silicon vertical tunnel field-effect transistors (Ge-Si-VTFETs) for analog/RF applications. Silicon 14(16):10603–10612. https://doi.org/10.1007/s12633-022-01802-8

    Article  CAS  Google Scholar 

  45. Kondekar PN, Nigam K, Pandey S, Sharma D (2017) Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF Applications. IEEE Trans Electron Devices 64(2):412–418. https://doi.org/10.1109/TED.2016.2637638

    Article  CAS  Google Scholar 

  46. Lee Y, Kim D, Cai J, Lauer I, Chang L, Koester SJ, Blaauw D, Sylvester D (2013) Low-power circuit analysis and design based on heterojunction tunneling transistors (HETTs). IEEE Trans Very Large Scale Integr (VLSI) Syst 21(9):1632–1643. https://doi.org/10.1109/TVLSI.2012.2213103

  47. Singh J, Ramakrishnan K, Mookerjea S, Datta S, Vijaykrishnan N, Pradhan D (2010) A novel Si-tunnel FET based SRAM design for ultra low-power 0.3 V \(V_{DD}\) applications. In: 2010 15th Asia and south pacific design automation conference (ASP-DAC). IEEE, pp 181–186. https://doi.org/10.1109/ASPDAC.2010.5419897

Download references

Acknowledgements

Gadarapulla Rasheed acknowledges the receipt of the Junior Research Fellowship through the scheme of National Fellowship for Other Backward Classes funded by the Ministry of Social Justice & Empowerment, Govt. of India, New Delhi, under Grant F. 44-1/2018 (SA-III).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, and design. R.G. performed device-level TCAD simulations and lookup-table generation. S.L.P.K performed SRAM circuit simulations and analysis. S.S. and R.N. edited the manuscript and provided suggestions. S.L.P.K wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sridevi Sriadibhatla.

Ethics declarations

Ethics approval

We comply to the ethical standards.

Consent to participate

Not Applicable.

Consent for publication

All the authors are giving consent to publish.

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannam, S.L.P., Gadarapulla, R., Sriadibhatla, S. et al. Design and Analysis of Si/GaSb HTFET-Based 7T SRAM Cell for Ultra-Low Voltage Applications. Silicon 16, 2369–2383 (2024). https://doi.org/10.1007/s12633-023-02834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02834-4

Keywords

Navigation