Skip to main content
Log in

Improvement of Nutrient Content, Physiological Traits and Grain Yield of Maize Varieties Grown in Saline Soil by Combining Biochar, Mycorrhizal Fungi and Silicon Foliar Application

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the studies that have been conducted on the effect of resources that increase tolerance to salt stress, their individual use has often been considered. Also, there is little evidence of their synergistic effects, especially for plants grown in saline soil conditions. In this research, a factorial experiment was conducted in a randomized complete block design in 2020 and 2021. The first factor was 3 maize varieties including 704, 604 and 370 and the second factor was resources ameliorating the adverse effects of salinity including control, single, dual and combined use of biochar (Bch), arbuscular mycorrhizal fungus (AMF) and silicon foliar application (SiFA). The results showed that leaves sodium concentration in the combined treatment of Bch + AMF + SiFA decreased by 13% compared to the control. In 704 the concentration of potassium and nitrogen in the combination of Bch + AMF + SiFA respectively showed an increase of 25 and 22% compared to the control. Also, dual consumption of treatments caused an increase in leaf iron, zinc, copper and manganese. Combined use of treatments decreased ion leakage and increased the relative water content and the photosynthetic pigments. In 604 and 370, the grain yield was respectively increased by 10 and 18% in the combination of Bch + AMF + SiFA compared to the control. Considering the positive effect of treatments in improving seed yield and seed oil percentage, the combination of Bch + AMF + SiFA can be recommended under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Riccetto S, Davis AS, Guan K, Pittelkow CM (2020) Integrated assessment of crop production and resource use efficiency indicators for the US Corn Belt. Glob Food Sec 24:100339. https://doi.org/10.1016/j.gfs.2019.100339

    Article  Google Scholar 

  2. Iqbal S, Hussain S, Qayyaum MA, Ashraf M, Saifullah S (2020) The response of maize physiology under salinity stress and its coping strategies. Plant Stress Physiology, London

  3. Al-Garni SMS, Khan MMA, Bahieldin A (2019) Plant growth-promoting bacteria and silicon fertilizer enhance plant growth and salinity tolerance in Coriandrum sativum. J Plant Interact 14:386–396. https://doi.org/10.1080/17429145.2019.1641635

    Article  CAS  Google Scholar 

  4. Islam AT, Ullah H, Himanshu SK, Tisarum R, Cha-um S, Datta A (2022) Effect of salicylic acid seed priming on morpho-physiological responses and yield of baby corn under salt stress. Sci Hortic 304:111304. https://doi.org/10.1016/j.scienta.2022.111304

    Article  CAS  Google Scholar 

  5. Singh A (2022) Soil salinity: a global threat to sustainable development. Soil Use Manag 38:39–67. https://doi.org/10.1111/sum.12772

    Article  Google Scholar 

  6. Desoky ESM, Saad AM, El-Saadony MT, Merwad ARM, Rady MM (2020) Plant growth-promoting rhizobacteria: potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. Biocatal Agric Biotechnol 30:101878. https://doi.org/10.1016/j.bcab.2020.101878

    Article  Google Scholar 

  7. Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371–406. https://doi.org/10.1007/s12229-016-9173-y

    Article  Google Scholar 

  8. Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291. https://doi.org/10.1016/j.bbrc.2017.11.043

    Article  CAS  PubMed  Google Scholar 

  9. Hayat K, Bundschuh J, Jan F, Menhas S, Hayat S, Haq F, Shah MA, Chaudhary HJ, Ullah A, Zhang D (2020) Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Crit Rev Environ Sci Technol 50:1085–1115. https://doi.org/10.1080/10643389.2019.1646087

    Article  CAS  Google Scholar 

  10. Mishra P, Mishra J, Arora NK (2021) Plant growth promoting bacteria for combating salinity stress in plants–recent developments and prospects: a review. Microbiol Res 252:126861. https://doi.org/10.1016/j.micres.2021.126861

    Article  CAS  PubMed  Google Scholar 

  11. Alzahrani Y, Kuşvuran A, Alharby HF, Kuşvuran S, Rady MM (2018) The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf 154:187–196. https://doi.org/10.1016/j.ecoenv.2018.02.057

    Article  CAS  PubMed  Google Scholar 

  12. Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status. K+ /Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. J Plant Growth Regul 78:371–387. https://doi.org/10.1007/s10725-015-0099-x

    Article  CAS  Google Scholar 

  13. Rios JJ, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M (2017) Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Front Plant Sci 8:948. https://doi.org/10.3389/fpls.2017.00948

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ben Laouane R, Meddich A, Bechtaoui N, Oufdou K, Wahbi S (2019) Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanzen 71:135–146. https://doi.org/10.1007/s10343-019-00461-x

    Article  CAS  Google Scholar 

  15. Parvin S, Van Geel M, Yeasmin T, Verbruggen E, Honnay O (2020) Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza 30:431–444. https://doi.org/10.1007/s00572-020-00957-9

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Bai Z, Huang J, Hussain S, Zhao F, Zhu C, Zhu L, Cao X, Jin Q (2019) Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil Tillage Res 195:104372. https://doi.org/10.1016/j.still.2019.104372

    Article  Google Scholar 

  17. Farhangi-Abriz S, Torabian S (2018) Biochar increased plant growth-promoting hormones and helped to alleviates salt stress in common bean seedlings. J Plant Growth Regul 37:591–601. https://doi.org/10.1007/s00344-017-9756-9

    Article  CAS  Google Scholar 

  18. Attarzadeh M, Balouchi H, Rajaie M, MovahhediDehnavi M, Salehi A (2019) Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas florescent bacterium under different irrigation regimes. J Environ Manag 231:182–188. https://doi.org/10.1016/j.jenvman.2018.10.040

    Article  CAS  Google Scholar 

  19. Nobile C, Lebrun M, Védère C, Honvault N, Aubertin ML, Faucon MP, Girardin C, Houot S, Kervroëdan L, Dulaurent AM (2022) Biochar and compost addition increases soil organic carbon content and substitutes P and K fertilizer in three french cropping systems. Agron Sustain Dev 42:1–15. https://doi.org/10.1007/s13593-022-00848-7

    Article  CAS  Google Scholar 

  20. Hassan IF, Ajaj R, Gaballah MS, Ogbaga CC, Kalaji HM, Hatterman-Valenti HM, Alam-Eldein SM (2022) Foliar application of nano-silicon improves the physiological and biochemical characteristics of ‘kalamata’olive subjected to deficit irrigation in a semi-arid climate. Plants 11:1561. https://doi.org/10.3390/plants11121561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karimian N, Nazari F, Samadi S (2021) Morphological and biochemical properties, leaf nutrient content, and vase life of tuberose (Polianthes tuberosa L.) affected by root or foliar applications of silicon (Si) and silicon nanoparticles (SiNPs). J Plant Growth Regul 40:2221–2235. https://doi.org/10.1007/s00344-020-10272-4

    Article  CAS  Google Scholar 

  22. Patterson B, Macrae E, Ferguson I (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Ann Biochem 139:487–492. https://doi.org/10.1016/0003-2697(84)90039-3

    Article  CAS  Google Scholar 

  23. Lang CA (1958) Simple micro determination of kjeldahl nitrogen in biological materials. Anal Chem 30:1692–1694. https://doi.org/10.1021/ac60142a038

    Article  CAS  Google Scholar 

  24. Jones JR, Wolf JB, Mkks HA (1991) Plant analysis: A paractical sampling, preparation, analysis and interpretation guide. Micro and Macro publishing Inc., Athens

    Google Scholar 

  25. Sairam RK, Dharmar K, Chinnusamy V, Meena RC (2009) Water logging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mug bean (Vigna radiata). J Plant Physiol 6:602–616. https://doi.org/10.1016/j.jplph.2008.09.005

    Article  CAS  Google Scholar 

  26. Weatherely PE (1950) Studies in water relation on cotton plants, the field measurement of water deficit in leaves. New Phytol 49:81–97. https://doi.org/10.1111/j.1469-8137.1950.tb05146.x

    Article  Google Scholar 

  27. Bates LS, Waldren RP, Tear ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  28. Nelson N (1944) A photometric adaptation of the smoggy method for the determination of sugars. J Biol Chem 153:375–380

    Article  CAS  Google Scholar 

  29. Cakmak I, Horst W (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean. Plant Physiol 83:463–468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x

    Article  CAS  Google Scholar 

  30. Ghanati F, Morita A, Yokota H (2002) Induction of suberin and increase of liginin content by exess boron in tabacco cell. Soil Sci 48:357–364. https://doi.org/10.1080/00380768.2002.10409212

    Article  CAS  Google Scholar 

  31. Arnon DE (1949) Copper enzymes in isolated chloroplasts polyphenol oxidase (Beta vulgaris). Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kordrostami M, Rabiei B (2019) Salinity stress toleranca in plants: physiological, molecular, and biotechnological approaches. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby H (Eds) Plant abiotic stress tolerance: agronomic, molecular and biotechnological approaches. Cham, Springer, pp 1–490. https://doi.org/10.1007/978-3-030-06118-0_4

  33. Ndiate NI, Saeed Q, Haider FU, Liqun C, Nkoh JN, Mustafa A (2021) Co-application of biochar and arbuscular mycorrhizal fungi improves salinity tolerance, growth and lipid metabolism of maize (Zea mays L.) in an alkaline soil. Plants 10:2490. https://doi.org/10.3390/plants10112490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moradi S, Rasouli-Sadaghiani MH, Sepehr E, Khodaverdiloo H, Barin M (2019) Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environ Monit Assess 191:1–13. https://doi.org/10.1007/s10661-019-7393-4

    Article  CAS  Google Scholar 

  35. Etesami H, Alikhani HA (2022) Silicon improves the effect of phosphate-solubilizing bacterium and arbuscular mycorrhizal fungus on phosphorus concentration of salinity-stressed alfalfa (Medicago sativa L). Rhizosphere 24:100619. https://doi.org/10.1016/j.rhisph.2022.100619

    Article  Google Scholar 

  36. Pan J, Peng F, Tedeschi A, Xue X, Wang T, Liao J, Zhang W, Huang C (2020) Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? a meta-analysis. Bot Stud 61:1–13. https://doi.org/10.1186/s40529-020-00290-6

    Article  CAS  Google Scholar 

  37. Kazemi R, Ronaghi A, Yasrebi J, Ghasemi-Fasaei R, Zarei M (2019) Effect of shrimp waste–derived biochar and arbuscular mycorrhizal fungus on yield, antioxidant enzymes, and chemical composition of corn under salinity stress. J Soil Sci Plant Nutr 19:758–770. https://doi.org/10.1007/s42729-019-00075-2

    Article  CAS  Google Scholar 

  38. Wen Z, Chen Y, Liu Z, Meng J (2022) Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur J Soil Biol 113:103448. https://doi.org/10.1016/j.ejsobi.2022.103448

    Article  CAS  Google Scholar 

  39. de Figueiredo CC, Farias WM, Coser TR, de Paula AM, Da Silva MRS, Paz-Ferreiro J (2019) Sewage sludge biochar alters root colonization of mycorrhizal fungi in a soil cultivated with corn. Eur J Soil Biol 93:103092. https://doi.org/10.1016/j.ejsobi.2019.103092

    Article  CAS  Google Scholar 

  40. Saleem I, Riaz M, Mahmood R, Rasul F, Arif M, Batool A, Akmal MH, Azeem F, Sajjad S (2022) Biochar and microbes for sustainable soil quality management. In: Microbiome Under Changing Climate. Woodhead Publishing, Cambridge, pp 289-311. https://doi.org/10.1016/B978-0-323-90571-8.00013-4

  41. Garg N, Bhandari P, Kashyap L, Singh S (2020) Silicon nutrition and arbuscular mycorrhizal fungi. In: Deshmukh DK (ed) Metalloids in Plants: Advances and Future Prospects. Jhon Wiley & Sons, Inc., Hoboken, pp 315–354. https://doi.org/10.1002/9781119487210.ch16

  42. Shen Z, Pu X, Wang S, Dong X, Cheng Cheng M (2022) Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake. Sci Rep 12:5089. https://doi.org/10.1038/s41598-022-09061-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, Kumar D, Bharadwaj V, Singh B, Singh RK, Aftab T (2022) Molecular insights into the role of reactive oxygen, nitrogen and sulphur species in conferring salinity stress tolerance in plants. J Plant Growth Regul 1-21. https://doi.org/10.1007/s00344-022-10591-8

  44. Mangal MV, Lal MK, Tiwari RK, Altaf MA, Sood S, Kumar D, Bharadwaj V, Singh B, Singh RK, Aftab T (2023) Molecular insights into the role of reactive oxygen, nitrogen and Sulphur species in conferring salinity stress tolerance in plants. J Plant Growth Regul 42:554–574. https://doi.org/10.1007/s00344-022-10591-8

    Article  CAS  Google Scholar 

  45. Ghassemi-Golezani K, Abdoli S (2022) Alleviation of salt stress in rapeseed (Brassica napus L.) plants by biochar-based rhizobacteria: new insights into the mechanisms regulating nutrient uptake, antioxidant activity, root growth and productivity. Arch Agron Soil Sci 1-18. https://doi.org/10.1080/03650340.2022.2103547

  46. Soothar MK, MounkailaHamani AK, Kumar Sootahar M, Sun J, Yang G, Bhatti SM, Traore A (2021) Assessment of acidic biochar on the growth, physiology and nutrients uptake of maize (Zea mays L) seedlings under salinity stress. Sustainability 13:3150. https://doi.org/10.3390/su13063150

    Article  CAS  Google Scholar 

  47. Romero-Muñoz M, Gálvez A, Martínez-Melgarejo PA, Piñero MC, Del Amor FM, Albacete A, López-Marín J (2022) The interaction between hydromulching and arbuscular mycorrhiza improves escarole growth and productivity by regulating nutrient uptake and hormonal balance. Plants 11:2795. https://doi.org/10.3390/plants11202795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choudhary S, Wani KI, Naeem M, Khan MMA, Aftab T (2023) Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J Plant Growth Regul 42:539–553. https://doi.org/10.1007/s00344-022-10584-7

    Article  CAS  Google Scholar 

  49. Alam MZ, McGee R, Hoque MA, Ahammed GJ, Carpenter-Boggs L (2019) Effect of arbuscular mycorrhizal fungi, selenium and biochar on photosynthetic pigments and antioxidant enzyme activity under arsenic stress in mung bean (Vigna radiata). Front Physiol 10:193. https://doi.org/10.3389/fphys.2019.00193

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abdelaal KA, El-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, El-Esawi M, Elkelish A (2019) Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy 10:26. https://doi.org/10.3390/agronomy10010026

    Article  CAS  Google Scholar 

  51. Mushtaq Z, Faizan S, Gulzar B, Hakeem KR (2021) Inoculation of rhizobium alleviates salinity stress through modulation of growth characteristics, physiological and biochemical attributes, stomatal activities and antioxidant defence in Cicer arietinum L. J Plant Growth Regul 40:2148–2163. https://doi.org/10.1007/s00344-020-10267-1

    Article  CAS  Google Scholar 

  52. He JD, Zou YN, Wu QS, Kuča K (2020) Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci Hortic 262:108745. https://doi.org/10.1016/j.scienta.2019.108745

    Article  CAS  Google Scholar 

  53. Nawaz F, Rafeeq R, Majeed S, Ismail MS, Ahsan M, Ahmad KS, Akram A, Haider G (2023) Biochar amendment in combination with endophytic bacteria stimulates photosynthetic activity and antioxidant enzymes to improve soybean yield under drought stress. J Soil Sci Plant Nutr 23:746–760. https://doi.org/10.1007/s42729-022-01079-1

    Article  CAS  Google Scholar 

  54. Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T (2021) Signaling toward reactive oxygen species-scavenging enzymes in plants. Front Plant Sci 11:2178. https://doi.org/10.3389/fpls.2020.618835

    Article  Google Scholar 

  55. Wungrampha S, Joshi R, Singla-Pareek S, Pareek A (2018) Photosynthesis and salinity: are these mutually exclusive? Photosynthetica 56:366–381. https://doi.org/10.1007/s11099-017-0763-7

    Article  CAS  Google Scholar 

  56. Sun J, Jia Q, Li Y, Zhang T, Chen J, Ren Y, Dong K, Xu S, Shi NN, Fu S (2022) Effects of Arbuscular Mycorrhizal Fungi and Biochar on Growth, Nutrient Absorption, and Physiological Properties of Maize (Zea mays L.). J Fungi 8:1275. https://doi.org/10.3390/jof8121275

    Article  CAS  Google Scholar 

  57. Yang Q, Ravnskov S, Pullens JWM, Andersen MN (2022) Interactions between biochar, arbuscular mycorrhizal fungi and photosynthetic processes in potato (Solanum tuberosum L). Sci Total Environ 816:151649. https://doi.org/10.1016/j.scitotenv.2021.151649

    Article  CAS  PubMed  Google Scholar 

  58. Hashem A, Kumar A, Al Dbass AM, Alqarawi AA, Al Arjani ABF, Singh G, Farooq M, Abd Allah EF (2019) Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci 26:614–624. https://doi.org/10.1016/j.sjbs.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  59. Shahzad S, Ali S, Ahmad R, Ercisli S, Anjum MA (2022) Foliar application of silicon enhances growth, flower yield, quality and postharvest life of tuberose (Polianthes tuberosa L.) under saline conditions by improving antioxidant defense mechanism. Silicon 14:1511–1518. https://doi.org/10.1007/s12633-021-00974-z

    Article  CAS  Google Scholar 

  60. Islam AT, Ullah H, Himanshu SK, Tisarum R, Cha-um S, Datta A (2023) The Interactive Effects of Silicon and Arbuscular Mycorrhizal Fungi on Growth, Physio-biochemical Traits, and Cob Yield of Baby Corn Plants under Salt Stress. Silicon 1-15. https://doi.org/10.1007/s12633-023-02363-0

  61. Jabborova D, Annapurna K, Paul S, Kumar S, Saad HA, Desouky S, Ibrahim MF, Elkelish A (2021) Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. J Fungi 7:571. https://doi.org/10.3390/jof7070571

    Article  CAS  Google Scholar 

  62. Raza MAS, Haider I, FarrukhSaleem M, Iqbal R, Usman Aslam M, Ahmad S, Abbasi SH (2021) Integrating biochar, rhizobacteria and silicon for strenuous productivity of drought stressed wheat. Commun Soil Sci Plant Anal 52:338–352. https://doi.org/10.1080/00103624.2020.1853149

    Article  CAS  Google Scholar 

  63. Yeilaghi H, Arzani A, Ghaderian M, Fotovat R, Feizi M, Pourdad SS (2012) Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem 130:618–625. https://doi.org/10.1016/j.foodchem.2011.07.085

    Article  CAS  Google Scholar 

  64. Sabagh A, Çiğ F, Seydoşoğlu S, Battaglia ML, Javed T, Iqbal MA, Awad M (2021) Salinity stress in maize: effects of stress and recent developments of tolerance for improvement. Cereal Grains 1:213

    Google Scholar 

  65. Langeroodi ARS, Mancinelli R, Radicetti E (2021) Contribution of biochar and arbuscular mycorrhizal fungi to sustainable cultivation of sunflower under semi-arid environment. Field Crops Res 273:108292. https://doi.org/10.1016/j.fcr.2021.108292

    Article  Google Scholar 

  66. Seleiman MF, Refay Y, Al-Suhaibani N, Al-Ashkar I, El-Hendawy S, Hafez EM (2019) Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy 9:637. https://doi.org/10.3390/agronomy9100637

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank the Islamic Azad University, Fasa Branch, Iran, who sincerely helped us in conducting this research.

Funding

This work was supported by the Islamic Azad University, Fasa Branch, Iran.

Author information

Authors and Affiliations

Authors

Contributions

"Sajad Ghaedi Kachouei performed the experimental work and wrote the draft manuscript as a part of dissertation for Ph.D. in Agronomy, Fasa Branch, Islamic Azad University, Mehdi Madandoust supervised the research and finalized the manuscript, Mahmood Dejam and Farhad Mohajeri helped as advisor the research and dissertation.

Corresponding author

Correspondence to Mehdi Madandoust.

Ethics declarations

Declarations

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Informed consent

No Human Participants and/or Animals were involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachouei, S.G., Madandoust, M., Dejam, M. et al. Improvement of Nutrient Content, Physiological Traits and Grain Yield of Maize Varieties Grown in Saline Soil by Combining Biochar, Mycorrhizal Fungi and Silicon Foliar Application. Silicon 16, 2607–2620 (2024). https://doi.org/10.1007/s12633-023-02824-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02824-6

Keywords

Navigation