Skip to main content
Log in

High-Throughput Low Frequency Reactor for Non-Thermal Plasma Synthesis of Amorphous Silicon Nanoparticles

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The purpose of this article is to increase availability and applicability of laboratory and industrial scale non-thermal plasma synthesis of nanoparticles. To that end, the article describes an original apparatus setup for the preparation of amorphous silicon nanoparticles from silane, as well as identification and characterization of the product. Glow discharge is generated through direct contact of a gas mixture with electrodes, an accessible 8 kHz power source is used. Hydrogen, argon, air, and mixtures thereof are considered as the dilutant gases. The methods employed include SEM, vibrational spectroscopy and total reflection XRF spectroscopy. On the basis of vibrational spectra interpretation the particles are found to consist of hydrogenated amorphous silicon. According to IR spectroscopy data, the surface passivation is largely with SiH2 groups when hydrogen or argon are used, in the case of air dilution the particles are readily surface oxidized. Attained mean sizes are on the order of 30–60 nm, as estimated with SEM. Possible electrode-borne impurities are determined to constitute less than 100 ppm of the samples. Partial crystallization, evident from Raman spectra, is observed only for high (60:1) hydrogen dilution with a low silane flow rate. Intermediate values of plasma power are found to be optimal for maximization of the production rate (up to 690 mg/h). Near total conversion of the precursor is demonstrated. The presented reactor design shows record performance in terms of the production rate, high efficiency in the reactant usage. Crucially, elemental purity of the product is not affected by electrode sputtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The source data are available from the corresponding author upon reasonable request.

References

  1. Mangolini L, Thimsen E, Kortshagen U (2005) High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. Nano Lett 5(4):655–659. https://doi.org/10.1021/nl050066y

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Yasar-Inceoglu O, Lopez T, Farshihagro E, Mangolini L (2012) Silicon nanocrystal production through non-thermal plasma synthesis: a comparative study between silicon tetrachloride and silane precursors. Nanotechnology 23:255604. https://doi.org/10.1088/0957-4484/23/25/255604

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Anthony RJ, Cheng K-Y, Holman ZC, Holmes RJ, Kortshagen UR (2012) An All-Gas-Phase Approach for the Fabrication of Silicon Nanocrystal Light-Emitting Devices. Nano Lett 12:2822–2825. https://doi.org/10.1021/nl300164z

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Nava G, Fumagalli F, Gambino S, Farella I, Dell’Erba G, Beretta D, Divitini G, Ducati C, Caironi M, Cola A, Di Fonzo F (2017) Towards an electronic grade nanoparticle-assembled silicon thin film by ballistic deposition at room temperature: the deposition method, and structural and electronic properties. J Mater Chem C 5:3725–3735. https://doi.org/10.1039/C7TC00187H

    Article  CAS  Google Scholar 

  5. Nava G, Fumagalli F, Neutzner S, Di Fozno F (2018) Large area porous 1D photonic crystals comprising silicon hierarchical nanostructures grown by plasma-assisted, nanoparticles jet deposition. Nanotechnology 29:465603. https://doi.org/10.1088/1361-6528/aade21

    Article  PubMed  CAS  Google Scholar 

  6. Pi XD, Gresback R, Liptak RW, Campbell SA, Kortshagen U (2008) Doping Efficiency, dopant location, and oxidation of Si nanocrystals. Appl Phys Lett 92:123102. https://doi.org/10.1063/1.2897291

    Article  ADS  CAS  Google Scholar 

  7. Wang K, He Q, Yang D, Pi X (2022) Erbium-Hyperdoped Silicon Quantum Dots: A Platform of Ratiometric Near-Infrared Fluorescence. Adv Opt Mater. https://doi.org/10.1002/adom.202201831

    Article  Google Scholar 

  8. Lopez T, Mangolini L (2014) Low activation energy for the crystallization of amorphous silicon nanoparticles. Nanoscale 6:1286–1294. https://doi.org/10.1039/C3NR02526H

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Xu F, Wagner B, Ghildiyal P, Mangolini L, Zachariah MR (2023) Low temperature oxidation of amorphous silicon nanoparticles. Phys Rev Mater 7:045403. https://doi.org/10.1103/PhysRevMaterials.7.045403

    Article  CAS  Google Scholar 

  10. Askari S, Svrcek V, Maguire P, Mariotti D (2015) The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots. Adv Mater 27:8011–8016. https://doi.org/10.1002/adma.201503013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sahu BB, Han JG, Shin KS, Ishikawa K, Hori M, Miyawaki Y (2015) Plasma diagnostic approach for high rate nanocrystalline Si synthesis in RF/UHF hybrid plasmas using a PECVD process. Plasma Sources Sci Technol 24:025019. https://doi.org/10.1088/0963-0252/24/2/025019

    Article  ADS  CAS  Google Scholar 

  12. Matsuda A (2004) Microcrystalline silicon. Growth Device Appl / J Non Cryst Solids 338–340:1–12. https://doi.org/10.1016/j.jnoncrysol.2004.02.012

    Article  ADS  CAS  Google Scholar 

  13. Dasog M, De los Reyes GB, Titova LV, Hegmann FA, Veinot JGC (2014) Size vs Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals Across the Visible Spectrum via Surface Groups. ACS Nano 8(9):9636–9648. https://doi.org/10.1021/nn504109a

    Article  PubMed  CAS  Google Scholar 

  14. Lavrov BP, Pipa AV, Röpcke J (2006) On determination of the degree of dissociation of hydrogen in non-equilibrium plasmas by means of emission spectroscopy: I. The collision-radiative model and numerical experiments. Plasma Sources Sci Technol 15:135–146. https://doi.org/10.1088/0963-0252/15/1/020

    Article  ADS  CAS  Google Scholar 

  15. Kortshagen UR, Sankaran RM, Pereira RN, Girshick SL, Wu JJ, Aydil ES (2016) Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chem Rev 116:11061–11127. https://doi.org/10.1021/acs.chemrev.6b00039

    Article  PubMed  CAS  Google Scholar 

  16. Marinov N, Zotov M (1997) Model investigation of the Raman spectra of amorphous silicon. Phys Rev B 55(5):2938–2944. https://doi.org/10.1103/PhysRevB.55.2938

    Article  ADS  CAS  Google Scholar 

  17. Richter H, Wang ZP, Ley L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39:625–629. https://doi.org/10.1016/0038-1098(81)90337-9

    Article  ADS  CAS  Google Scholar 

  18. Nickel NH, Lengsfeld P, Sieber I (2000) Raman spectroscopy of heavily doped polycrystalline silicon thin films. Phys Rev B 61:15558–15561

    Article  ADS  CAS  Google Scholar 

  19. Waman VS, Funde AM, Kamble MM, Pramod MR, Hawaldar RR, Amalnerkar DP, Sathe VG, Gosavi SW, Jadkar SR (2011) Hydrogenated Nanocrystalline Silicon Thin Films Prepared by Hot-Wire Method with Varied Process Pressure. J Nanotechnol 2011:242398. https://doi.org/10.1155/2011/2423985

    Article  Google Scholar 

  20. Hernández S, López-Vidrier J, López-Conesa L, Hiller D, Gutsch S, Ibáñez J, Estradé S, Peiró F, Zacharias M, Garrido B (2014) Determining the crystalline degree of silicon nanoclusters/SiO2 multilayers by Raman scattering. J Appl Phys 115:203504. https://doi.org/10.1063/1.4878175

    Article  ADS  CAS  Google Scholar 

  21. Jariwala BN, Kramer NJ, Petcu MC, Bobela DC, van de Sanden MCM, Stradins P, Ciobanu CV, Agarwal S (2011) Surface Hydride Composition of Plasma-Synthesized Si Nanoparticles. J Phys Chem C 115(42):20375–20379. https://doi.org/10.1021/jp2028005

    Article  CAS  Google Scholar 

  22. Agarwal S, Takano A, van de Sanden MCM, Maroudas D, Aydil ES (2002) Abstraction of atomic hydrogen by atomic deuterium from an amorphous hydrogenated silicon surface. J Chem Phys 117:10805–10816. https://doi.org/10.1063/1.1522400

    Article  ADS  CAS  Google Scholar 

  23. von Keudell A, Abelson JR (1999) Direct insertion of SiH3 radicals into strained Si-Si surface bonds during plasma deposition of hydrogenated amorphous silicon films. Phys Rev B 59(8):5791–5798. https://doi.org/10.1103/PhysRevB.59.5791

    Article  ADS  Google Scholar 

  24. Xu F, Nava G, Biswas P, Dulalia I, Wang H, Alibay Z, Gale M, Kline DJ, Wagner B, Mangolini L, Zachariah MR (2022) Energetic characteristics of hydrogenated amorphous silicon nanoparticles. Chem Eng J 430:133140. https://doi.org/10.1016/j.cej.2021.133140

    Article  CAS  Google Scholar 

  25. Cádiz Bedini AP, Klingebiel B, Luysberg M, Carius R (2017) Sonochemical synthesis of hydrogenated amorphous silicon nanoparticles from liquid trisilane at ambient temperature and pressure. Ultrason Sonochem 39:883–888. https://doi.org/10.1016/j.ultsonch.2017.06.011

    Article  PubMed  CAS  Google Scholar 

  26. Marra DC, Kessels WMM, van de Sanden MCM, Kashefizadeh K, Aydil ES (2003) Surface hydride composition of plasma deposited hydrogenated amorphous silicon: in situ infrared study of ion flux and temperature dependence. Surf Sci 530:1–16. https://doi.org/10.1016/S0039-6028(03)00396-0

    Article  ADS  CAS  Google Scholar 

  27. Agarwal S, Hoex B, van de Sanden MCM, Maroudas D, Aydil ES (2004) Hydrogen in Si–Si bond center and platelet-like defect configurations in amorphous hydrogenated silicon. J Vac Sci Technol B 22:2719–2726. https://doi.org/10.1116/1.1824191

    Article  CAS  Google Scholar 

  28. Sriraman S, Agarwal S, Aydil ES, Maroudas D (2002) Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418:62–65. https://doi.org/10.1038/nature00866

    Article  ADS  PubMed  CAS  Google Scholar 

  29. Awazu K (1999) Oscillator strength of the infrared absorption band near 1080 cm−1 in SiO2 films. J Non Cryst Solids 260:242–244. https://doi.org/10.1016/S0022-3093(99)00589-X

    Article  ADS  CAS  Google Scholar 

  30. Oguz S, Anderson DA, Paul W, Stein HJ (1980) Reversible changes in the oscillator strengths of Si-H vibrations in a-Si: H induced by He+-ion bombardment. Phys Rev B 22(2):880–885. https://doi.org/10.1103/PhysRevB.22.880

    Article  ADS  CAS  Google Scholar 

  31. Popelensky VM, Dorofeev SG, Kononov NN, Bubenov SS, Vinokurov AA (2020) Room temperature oxidation of Si nanocrystals at dry and wet air. J Nanopart Res 22:54. https://doi.org/10.1007/s11051-020-4762-4

    Article  CAS  Google Scholar 

  32. Tarasevich BN (2012) IR Spectra of Main Classes of Organic Compounds. Moscow State University, Moscow

    Google Scholar 

  33. Carlson DE, Magee CW, Thomas JH III (1980) Hydrogenated amorphous silicon films in palladium Schottky barrier cells. Sol Cells 1(4):371–379. https://doi.org/10.1016/0379-6787(80)90061-7

    Article  ADS  CAS  Google Scholar 

  34. Curtins H, Wyrsch N, Shah AV (1987) High-rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency. Electron Lett 23(5):228–230. https://doi.org/10.1049/el:19870160

    Article  ADS  Google Scholar 

  35. Kroll U, Shah A, Keppner H, Meier J, Torres P, Fischer D (1997) Potential of VHF-plasmas for low-cost production of a-Si: H solar cells. Sol Energy Matter Sol Cells 48:343–350. https://doi.org/10.1016/S0927-0248(98)80000-7

    Article  CAS  Google Scholar 

  36. Moreno-Couranjou M, Monthioux M, Gonzalez-Aguilar J, Fulcheri L (2009) A non-thermal plasma process for the gas phase synthesis of carbon nanoparticles. Carbon 47:2310–2321. https://doi.org/10.1016/j.carbon.2009.04.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from M. V. Lomonosov Moscow State University Program of Development in the form of access to a S2 Picofox TXRF spectrometer and a Frontier FTIR spectrometer.

Funding

This work was supported by the Russian Science Foundation (project no. 22–23-00540). https://rscf.ru/en/project/22-23-00540/

Author information

Authors and Affiliations

Authors

Contributions

Sergey G. Dorofeev, Ilya V. Yudin and Nikolay N. Kononov constructed the synthetic apparatus; Sergei S. Bubenov and Alexander A. Vinokurov performed syntheses of the material, Sergei S. Bubenov, Vadim M. Popelensky and Tatyana A. Kuznetsova performed sample characterization; Sergey G. Dorofeev conceptualized and supervised the research; Sergei S. Bubenov wrote the original draft of the text and prepared the figures; all authors reviewed the manuscript.

Corresponding author

Correspondence to Sergey G. Dorofeev.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 631 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubenov, S.S., Vinokurov, A.A., Yudin, I.V. et al. High-Throughput Low Frequency Reactor for Non-Thermal Plasma Synthesis of Amorphous Silicon Nanoparticles. Silicon 16, 1775–1783 (2024). https://doi.org/10.1007/s12633-023-02797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02797-6

Keywords

Navigation