Skip to main content
Log in

Using of Green Silica Amine-Fe3O4 Modified from Rrecovery Ag(I) on Aqueous System

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The study and application of green and economical silica adsorbents at the industrial level for the recovery of gold and silver from cyanide-rich aqueous solution systems in the mining industry has a great relevance, since activated carbon generates fine carbon particles that represent a monthly loss of 1938 g/ton of silver in some cyanidation plants; therefore, the search for other adsorbents that allow the most effective recovery of gold and silver is of great interest. Thus, in this paper is proposed and evaluated the possible replacement of activated carbon with green silica modified with Fe3O4 and triethylamine groups (GMS-N3-Fe3O4) synthesized by Si(OH)4 and Fe3O4 as magnetic materials for its application in the magnetic recovery of silver(I) during the cyanidation process. Results show that the aging of Si(OH)4 allows the improvement of the material preparation, both surface area and pore size manipulation, where the highest surface area is observed at 72 h of aging (624 m2g–1), while the pore distribution is bimodal type at 4 and 8 nm with 0 and 48 h of aging. On the other hand, the material maintains its adsorption capacity at 90% up to the fourth adsorption–desorption cycle, decreasing to 80% after the fifth cycle, which shows a good adsorption capacity and reusability of the proposed material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Ethaib S, Al-Qutaifia S, Al-Ansari N, Zubaidi SL (2022) Function of nanomaterials in removing heavy metals for water and wastewater remediation: a review. Environments 9:123. https://doi.org/10.3390/environments9100123

    Article  Google Scholar 

  2. Pratiksha J, Prolta A, Mehta S, Khan TS, Srivastava M, Khatri OP (2022) Adsorptive removal of multiple organic dyes from wastewater using regenerative microporous carbon: Decisive role of surface-active sites charge and size of dye molecules. Chemosphere 308(3):136433. https://doi.org/10.1016/j.chemosphere.2022.136433

    Article  CAS  Google Scholar 

  3. Hernández JA, Patiño-Saldivar L, Ardila A, Salazar-Hernández M, Talavera A, Hernández-Soto R (2021) 3,5-Dinitrosalicylic acid adsorption using granulated and powdered activated carbons. Molecules 26:6918. https://doi.org/10.3390/molecules26226918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cruz OF, Gómez IC, Escandell MM, Rambo CR, Silvestre-Albero J (2022) Activated carbon from polyurethane residues as molecular sieves for kinetic adsorption/separation of CO2/CH4. Colloids Surfaces A: Physicochem Eng Aspects 652:129882. https://doi.org/10.1016/j.colsurfa.2022.129882

    Article  CAS  Google Scholar 

  5. Aubé V, Bellec S, Barakate M, Eddahabi MR, Chaik Y, Deshaies M, Girard J (2017) What to do with CIL carbon fines? IAMGOLD innovative solution. Proc Conf Metal Host World Gold & Nickel Cobalt

  6. Hua T, Li D, Li X, Lin J, Niu J, Cheng J, Zhou X, Yongyou H (2022) Synthesis of mesoporous-structured MIL-68(Al)/MCM-41-NH2 for methyl orange adsorption: Optimization and Selectivity. Environ Res 215(3):114433. https://doi.org/10.1016/j.envres.2022.114433

    Article  PubMed  CAS  Google Scholar 

  7. Darroudi M, Ziarani GM, Ghasemi JB, Bahar S, Badiei A (2022) SBA-ionic liquid as an efcient adsorbent of palladium, silver, and gold ions. J Iran Chem Soc 19:247–255. https://doi.org/10.1007/s13738-021-02302-z

    Article  CAS  Google Scholar 

  8. Hua T, Li D, Li X, Lin J, Niu J, Cheng J, Zhou X, Yongyou H (2022) Synthesis of mesoporous-structured MIL-68(Al)/MCM-41-NH2 for methyl orange adsorption: Optimization and Selectivity. Environ Res 215(3):114433. https://doi.org/10.1016/j.envres.2022.114433

    Article  PubMed  CAS  Google Scholar 

  9. Borchert KBL, Carrasco KH, Steinbach C, Reis B, Gerlach N, Mayer M, Schwarz S, Schwarz D (2022) Tuning the pore structure of templated mesoporous poly(melamine-co-formaldehyde) particles toward diclofenac removal. J Environ Manage 324:116221. https://doi.org/10.1016/j.jenvman.2022.116221

    Article  PubMed  CAS  Google Scholar 

  10. Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Moghaddam SPH, Ebrahimnejad F, Asare-Addo K, Nokhodchi A (2022) A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 625:122099. https://doi.org/10.1016/j.ijpharm.2022.122099

    Article  PubMed  CAS  Google Scholar 

  11. Hao B-B, Deng X-Z, Yang J-K, Ying-dong J, Xiao-jun S, Yong-li S, Xi-quing Y (2022) Preparation of folic conjugated magnetic silica mesoporous nanoparticles and their encapsulated 10-HCPT anticancer behavior. J Inorg Organomet Polym 32:2986–2993. https://doi.org/10.1007/s10904-022-02338-5

    Article  CAS  Google Scholar 

  12. Syed S (2016) Silver recovery aqueous techniques from diverse source: hydrometallurgy in recycling. Waste Manage 50:234–256. https://doi.org/10.1016/j.wasman.2016.02.006

    Article  CAS  Google Scholar 

  13. Aghaei E, Alorro RD, Encila AN, Yoo K (2017) Magnetic adsorbents for the recovery of precious metals from leach solutions and wastewater. Metals 7:529–560. https://doi.org/10.3390/met7120529

    Article  CAS  Google Scholar 

  14. Liu J, Deng Z, Haojie Y, Wang Li (2021) Ferrocene-based metal-organic framework for highly efficient recovery of gold from WEEE. Chem Eng J 410:128360. https://doi.org/10.1016/j.cej.2020.128360

    Article  CAS  Google Scholar 

  15. Zhao J, Wang C, Wang S, Zhang L, Zhang B (2019) Selective recovery of Au(III) from wastewater by a recyclable magnetic Ni0.6Fe2.4O4 nanoparticels with mercaptothiadiazole: Interaction models and adsorption mechanisms. J Clean Prod 236:117605. https://doi.org/10.1016/j.jclepro.2019.117605

    Article  CAS  Google Scholar 

  16. Abdollahi B, Salari D, Zarei M (2022) Synthesis and characterization of magnetic Fe3O4@SiO2-MIL-53(Fe) metal-organic framework and its application for efficient removal of arsenate from surface and groundwater. J Environ Chem Eng 10(2):107144. https://doi.org/10.1016/j.jece.2022.107144

    Article  CAS  Google Scholar 

  17. Ragheb E, Shamsipur M, Jalali F, Mousavi F (2022) Modified magnetic-metal organic framework as a green and efficient adsorbent for removal of heavy metals. J Environ Chem Eng 10(2):107297. https://doi.org/10.1016/j.jece.2022.107297

    Article  CAS  Google Scholar 

  18. Zhao Z, Wang M, Jiang X, Lv R, Mao C (2022) Fe3O4 Nanoparticles coated with mesoporous shells for Pb(II) removal from blood. ACS Appl Nano Mater 5(1):249–258. https://doi.org/10.1021/acsanm.1c02739

    Article  CAS  Google Scholar 

  19. He J, Song G, Wang X, Zhou L, Li J (2022) Multifunctional magnetic Fe3O4/GO/Ag composite microspheres for SERS detection and catalytic degradation of methylene blue and ciprofloxacin. Journal of Alloys and Compounds 893:162226. https://doi.org/10.1016/j.jallcom.2021.162226

    Article  CAS  Google Scholar 

  20. Sarojini SV, Babu N, Rajamohan MR, Pugazhendhi A (2022) Application of a polymer-magnetic-algae based nano-composite for the removal of methylene blue – Characterization, parametric and kinetic studies. Environ Poll 292(5):118376. https://doi.org/10.1016/j.envpol.2021.118376

    Article  CAS  Google Scholar 

  21. Medina-Espinosa T, Asimbaya C, Galeas S, Rosas-Laverde NM, Debut A, Guerrero VH (2021) Asorptive removal of chromium (VI) from synthetic wáter using magnetic lignocellulosiccomposites. IOP Conf Ser Earth Environ Sci 897:012020

    Article  Google Scholar 

  22. Kosuge K, Tsunashima A (1995) New silica-pallared material prepared from the layer silicic acid of Ilerite. J Chem Soc Chem Commun. 2427–2428

  23. Li W, Wang X, Shi L, Xianyuan D, Wang Z (2020) Remediation of anthracene-contaminated soil with sophorolipids-SDBS-Na2SiO3 and treatment of eluting wastewater. Water 12:2188. https://doi.org/10.3390/w12082188

    Article  CAS  Google Scholar 

  24. Watanabe Y, Amitani N, Yokoyama T, Ueda A, Kusakabe M, Unami S, Odashima Y (2021) Synthesis of mesoporous silica from geothermal water. Sci Rep 11(1):23811. https://doi.org/10.1038/s41598-021-03133-x

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ewlad-Ahmed AM, Morris MA, Patwardhan SV, Gibson LT (2012) Removal of formaldehyde from air using functionalized silica supports. Environ Sci Technol 46(24):13354–13360. https://doi.org/10.1021/es303886q

    Article  ADS  PubMed  CAS  Google Scholar 

  26. Alotaibi KM, Shiels L, Lacaze L, Peshkur TA, Anderson P, Machala L, Critchley K, Patwardhan SV, Gibson LT (2017) Iron supported on bioinspired green silica for water remediation. Chem Sci. 8(1):567–576. https://doi.org/10.1039/c6sc02937j

    Article  PubMed  CAS  Google Scholar 

  27. Manning JRH, Yip TWS, Centi A, Jorge M, Patwardhan SV (2017) An eco-friendly, tunable and scalable method for producing porous functional nanomaterials designed using molecular interactions. Chemsuschem 10(8):1683–1691. https://doi.org/10.1002/cssc.201700027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pilling R, Patwardhan SV (2022) Recent advances in enabling green manufacture of functional nanomaterials: a case study of bioinspired silica. ACS Sustain Chem Eng 10(37):12048–12064. https://doi.org/10.1021/acssuschemeng.2c02204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ewlad-Ahmed AM, Morris M, Holmes J, Patwardhan SV, Gibson LT (2022) Green nanosilicas for monoaromatic hydrocarbons removal from air. Silicon 14:1447–1454. https://doi.org/10.1007/s12633-020-00924-1

    Article  CAS  Google Scholar 

  30. Rimmelin-Maury P, Moutin T, Quéguiner B (2007) A new method for nanomolar determination of silicic acid in seawater. Analytic Chimica Acta 587:281–286. https://doi.org/10.1016/j.aca.2007.01.055

    Article  CAS  Google Scholar 

  31. Garrett HE, Walker J (1964) The spectrophotometric determination of silicic acid in dilute solution. Analyst 89:6642–650. https://doi.org/10.1039/AN9648900642

    Article  Google Scholar 

  32. Taqui M, Das S, Kamilya T, Mondal S, Chaudhuri S (2022) Green synthesis of iron-oxide nanoparticle using scrap iron as precursor for the removal Pb(II) from Aqueous Medium. J Environ Eng Landsc 30(2):308–320. https://doi.org/10.3846/jeelm.2022.16747

    Article  Google Scholar 

  33. Dadej A, Wózniak-Braszak A, Bilski P, Piotrowska-Kempisty H, Józkowiak M, Stawny M, Dadej D, Mrotek M, Jelínska A (2022) APTES-Modified SBA-15 as a non-toxic carrier for phenylbutazone. Materials 15:946. https://doi.org/10.3390/ma15030946

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  34. Iswar I, Malfait WJ, Balog S, Winnedeld F, Lattuada M, Koebel MM (2017) Effect of aging on silica aerogel properties. Microporous Mesoporous Mater 241:293–302. https://doi.org/10.1016/j.micromeso.2016.11.037

    Article  CAS  Google Scholar 

  35. Casasús R, Marcos MD, Martínez-Máñez R, Ros-Lis JV, Soto J, Villaescusa LA, Amorós P, Beltrán D, Guillem C, Latorre J (2004) Toward the development of ionically controlled nanoscopic molecular gates. J. Am Chem Soc 126:8612–8613. https://doi.org/10.1021/ja048095i

    Article  PubMed  CAS  Google Scholar 

  36. Casasús R, Aznar E, Marcos MD, Martíne-Máñes R, Sancenón F, Soto J, Amorós P (2006) New methods for anion recognition and signaling using nanoscopic gatelike scaffoldings. Angew Chem. 45:6661–6664. https://doi.org/10.1002/anie.200602045

    Article  CAS  Google Scholar 

  37. Mohammadi HR, Nekobahr E, Akhtari J, Saeedi M, Akbari J, Fathi F (2021) Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol Rep. 8:331–336. https://doi.org/10.1016/j.toxrep.2021.01.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dunne RC, Komar SK, Young CA (2019) “SME Mineral Processing & extractive Metallurgy Handbook” Colorado, USA. Chapter 6.4: Daniel A. Norrgran, Michael J. Mankosa·Magnetic Separation, page 839–856

  39. Norrgran DA, Mankosa MJ (2019) “Magnetic Separation” Chapter 6.4 In: SME Minerall Processing & Extractive Metallurgy Handbook; Robert C. Dunne, S. Komar Kawatra and Courtney A. Young Editors. Society for Mining, Metallurgy & Exploration; Colorado USA

  40. Foo KF, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  41. Gutiérrez-Valtierra M, Salazar-Salazar-Hernández C, Mendoza-Miranda JM, Elorza-Rodríguez E, de Jesús Puy-Alquiza M, Caudillo-González M, Salazar H, Mercedes SRH (2019) Amine modified SHR, Cr(III) removal, industrial waste effluents. Desalination and Water Treatment 158: 152-163. https://doi.org/10.5004/dwt.2019.24184

  42. López-Ahumada E, Salazar-Hernández M, Talavera-López A, Solis-Marcial OJ, Hernández-Soto R, Ruelas-Leyva JP, Hernández JA (2022) Removal of anionic and cationic dyes present in solution using biomass of eichhornia crassipes as Bioadsorbent. Molecules 27:6442–6465. https://doi.org/10.3390/molecules27196442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Largitte L, Pasquier R (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109:495–504. https://doi.org/10.1016/j.cherd.2016.02.006

    Article  CAS  Google Scholar 

  44. Jean-Pierre S (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

  45. Feng-Chin W, Ru-Ling T, Shang-Chieh H, Ruey-Shin J (2009) Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review. Chem Eng J 151:1–9. https://doi.org/10.1016/j.cej.2009.02.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the University of Guanajuato through the DAIP-CIIC 142/2023 and the Instituto Politécnico Nacional, through the Secretaría de Investigación y Posgrado (SIP) for the financial support under the grant number SIP-20227036 and LICAMM Laboratory.

Funding

This work was supported by the University of Guanajuato through the DAIP-CIIC 142/2023 and the Instituto Politécnico Nacional, through the Secretaría de Investigación y Posgrado (SIP) for the financial support under the grant number SIP-20227036.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development and revision of the manuscript. The author Salazar-Hernández Carmen and Salazar-Hernández Mercedes were the technical and financial responsible, and the authors Enrique Elorza Rodríguez, Juan Manuel Mendoza-Miranda, Ma. de Jesús Puy-Alquiza, Raúl Miranda-Aviles, Carolina Rodríguez Rodríguez developed technical support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mercedes Salazar-Hernández or Carmen Salazar-Hernández.

Ethics declarations

Consent to Participate and Consent for Publication

The authors express their approval to participate and publish this work in Silicon Journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Aging silicic acid from sodium silicate enhances its textural properties.

• The modification with triethylenamino groups enables magnetite to be incorporated into the green mesoporous silica, enhancing the magnetic recovery of Ag(l) at 2000 Gauss.

• The Ag(I) adsorption kinetics on GMS-N3-F3O4 was adjusted to the PSO model.

• The proposed material maintains a 90% adsorption capacity throughout the fourth cycle of adsorption and desorption.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 147 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Hernández, M., Salazar-Hernández, C., Rodríguez, E.E. et al. Using of Green Silica Amine-Fe3O4 Modified from Rrecovery Ag(I) on Aqueous System. Silicon 16, 1509–1524 (2024). https://doi.org/10.1007/s12633-023-02779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02779-8

Keywords

Navigation