Skip to main content
Log in

Applying I-Optimal Design for Tuning Internal Cavity of Hollow Mesoporous Silica Nanoparticles for 5-Fluorouracil Delivery: Investigating Drug-Loading/Releasing Behavior and Biocompatibility Properties

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Hollow mesoporous silica nanoparticles (HMSNs) are promising drug carriers due to their large surface area, high porosity, and biocompatibility. In this study, a straightforward and adjustable synthesis strategy was developed for generating HMSNs with tunable hollow cavities and use them to deliver 5-fluorouracil, a common anticancer drug as model drug. This approach involves using solid SiO2 nanoparticles (sSiO2 NPs) and cetyltrimethylammonium bromide (CTAB) as templates. Remarkably, our study introduces the application of I-optimal design to optimize the size of sSiO2 NPs, subsequently impacting the internal cavity diameter and drug loading capacity of the resulting HMSNs. Dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Brunauer Emmett-Teller (BET) analysis, Fourier-transform infrared (FTIR) spectroscopy and in vitro drug release were conducted to characterize the synthesized particles. Moreover, the blood compatibility and cytotoxicity were performed to demonstrate the biocompatibility of as-synthesized HMSNs. Notably, the investigation unveils that both the internal cavity size and shell thickness have discernible effects on drug loading and release behavior. Furthermore, it was observed that HMSNs particle size played a significant role in their hemocompatibility, while confirming that all synthesized HMSNs exhibited appropriate biocompatibility. Overall, these findings highlight the facile control and manipulation of drug loading and release characteristics within HMSNs through tuning the hollow cores. Additionally, these results demonstrate the potential for regulating hemocompatibility, thereby expanding the range of applications for these nanoparticles. This research provides an innovative and versatile methodology for the synthesis of HMSNs, emphasizing their potential application in drug delivery systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Kim M-K, Ki D-H, Na Y-G, Lee H-S, Baek J-S, Lee J-Y, Lee H-K et al (2021) Optimization of mesoporous silica nanoparticles through statistical design of experiment and the application for the anticancer drug. Pharmaceutics 13:184. https://doi.org/10.3390/pharmaceutics13020184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Khafaji MA, Gaál A, Jezsó B, Mihály J, Bartczak D, Goenaga-Infante H, Varga Z (2022) Synthesis of Porous Hollow Organosilica particles with tunable shell thickness. Nanomaterials 12:1172. https://doi.org/10.3390/nano12071172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Olivieri F, Castaldo R, Cocca M, Gentile G, Lavorgna M (2021) Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: a critical review. Nanoscale 13:9091–9111. https://doi.org/10.1039/D1NR01899J

    Article  CAS  PubMed  Google Scholar 

  4. Yu A, Dai X, Wang Z, Chen H, Guo B, Huang L (2022) Recent advances of mesoporous silica as a platform for cancer immunotherapy. Biosensors 12:109. https://doi.org/10.3390/bios12020109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mutlu N, Beltrán AM, Nawaz Q, Michálek M, Boccaccini AR, Zheng K (2021) Combination of selective etching and impregnation toward hollow mesoporous bioactive glass nanoparticles. Nanomaterials 11:1846. https://doi.org/10.3390/nano11071846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Q, Zhou Y (2023) Brief history, preparation method, and biological application of mesoporous silica molecular sieves: a narrative review. Molecules 28:2013. https://doi.org/10.3390/molecules28052013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu Y, McLellan J, Xia Y (2004) Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir 20:3464–3470. https://doi.org/10.1021/la036245h

    Article  CAS  PubMed  Google Scholar 

  8. Montaño-Priede JL, Coelho JP, Guerrero-Martínez A, Peña-Rodríguez O, Pal U (2017) Fabrication of monodispersed Au@SiO2 nanoparticles with highly stable silica layers by ultrasound-assisted Stöber method. J Phys Chem C 121:9543–9551. https://doi.org/10.1021/acs.jpcc.7b00933

    Article  CAS  Google Scholar 

  9. Lin Z-t, Wu Y-b, Bi Y-g (2018) Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. J Nanopart Res 20:304. https://doi.org/10.1007/s11051-018-4411-3

    Article  CAS  Google Scholar 

  10. Vasconcelos DCL, Campos WR, Vasconcelos V, Vasconcelos WL (2002) Influence of process parameters on the morphological evolution and fractal dimension of sol–gel colloidal silica particles. Mater Sci Eng A 334:53–58. https://doi.org/10.1016/S0921-5093(01)01762-2

    Article  Google Scholar 

  11. Edrissi M, Soleymani M, Adinehnia M (2011) Synthesis of silica nanoparticles by ultrasound-assisted sol-gel method: optimized by Taguchi Robust Design. Chem Eng Technol 34:1813–1819. https://doi.org/10.1002/ceat.201100195

    Article  CAS  Google Scholar 

  12. Green DL, Lin JS, Lam Y-F, Hu MZC, Schaefer DW (2003) Size, volume fraction, and nucleation of Stober silica nanoparticles. J Colloid Interface Sci 266:346–358. https://doi.org/10.1016/S0021-9797(03)00610-6

    Article  CAS  PubMed  Google Scholar 

  13. Bari AH, Jundale RB, Kulkarni AA (2020) Understanding the role of solvent properties on reaction kinetics for synthesis of silica nanoparticles. Chem Eng J 398:125427. https://doi.org/10.1016/j.cej.2020.125427

    Article  CAS  Google Scholar 

  14. Bourebrab MA, Oben DT, Durand GG, Taylor PG, Bruce JI, Bassindale AR, Taylor A (2018) Influence of the initial chemical conditions on the rational design of silica particles. J Sol-Gel Sci Technol 88:430–441. https://doi.org/10.1007/s10971-018-4821-9

    Article  CAS  Google Scholar 

  15. Xu J, Ren D, Chen N, Li X, Ye Z, Ma S, Chen Q (2021) A facile cooling strategy for the preparation of silica nanoparticles with rough surface utilizing a modified Stöber system. Colloids Surf Physicochem Eng Aspects 625:126845. https://doi.org/10.1016/j.colsurfa.2021.126845

    Article  CAS  Google Scholar 

  16. Prasad R, Venugopal R, Kumaraswamidhas LA, Pandey C, Pan SK (2020) Analysis of the influence of Blaine numbers and firing temperature on iron ore pellets properties using RSM-I-Optimal design: an approach toward suitability. Min Metall Explor 37:1703–1716. https://doi.org/10.1007/s42461-020-00282-x

    Article  Google Scholar 

  17. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  18. Chen F, Hong H, Shi S, Goel S, Valdovinos HF, Hernandez R, Theuer CP et al (2014) Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci Rep 4:5080. https://doi.org/10.1038/srep05080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Pérez-Trujillo M, Cattoën X, Pleixats R (2019) Recyclable mesoporous organosilica nanoparticles derived from proline-valinol amides for asymmetric organocatalysis. ACS Sustain Chem Eng 7:14815–14828. https://doi.org/10.1021/acssuschemeng.9b02838

    Article  CAS  Google Scholar 

  20. Yang W, Song FX, Wang S, Zhang L, Zeng X, Li Y (2021) Multifunctional mesoporous silica nanoparticles with different morphological characteristics for in vitro cancer treatment. Colloids Surf Physicochem Eng Aspects 610:125717. https://doi.org/10.1016/j.colsurfa.2020.125717

    Article  CAS  Google Scholar 

  21. Ebrahimnejad P, Rezaeiroshan A, Babaei A, Khanali A, Aghajanshakeri S, Farmoudeh A, Nokhodchi A (2023) Hyaluronic acid-coated chitosan/gelatin nanoparticles as a new strategy for topical delivery of metformin in melanoma. BioMed Res Int 2023:3304105. https://doi.org/10.1155/2023/3304105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aghajanshakeri S, Salmanmahiny A, Aghajanshakeri S, Babaei A, Alishahi F, Babayani E, Shokrzadeh M (2023) Modulatory effect of amifostine (WR-1065) against genotoxicity and oxidative stress induced by methotrexate in human umbilical vein endothelial cells (HUVECs). Toxicol Mech Methods 1–11:1. https://doi.org/10.1080/15376516.2023.2238069

    Article  CAS  Google Scholar 

  23. Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F (2011) Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine 6:683–692. https://doi.org/10.2147/ijn.S17386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim JW, Kim LU, Kim CK (2007) Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromol 8:215–222. https://doi.org/10.1021/bm060560b

    Article  CAS  Google Scholar 

  25. Wang X-D, Shen Z-X, Sang T, Cheng X-B, Li M-F, Chen L-Y, Wang Z-S (2010) Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341:23–29. https://doi.org/10.1016/j.jcis.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  26. Fernandes RS, Raimundo IM, Pimentel MF (2019) Revising the synthesis of Stöber silica nanoparticles: a multivariate assessment study on the effects of reaction parameters on the particle size. Colloids Surf Physicochem Eng Aspects 577:1–7. https://doi.org/10.1016/j.colsurfa.2019.05.053

    Article  CAS  Google Scholar 

  27. Giesche H (1994) Synthesis of monodispersed silica powders I. particle properties and reaction kinetics. J Eur Ceram Soc 14:189–204. https://doi.org/10.1016/0955-2219(94)90087-6

    Article  CAS  Google Scholar 

  28. Park SK, Kim KD, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surf Physicochem Eng Aspects 197:7–17. https://doi.org/10.1016/S0927-7757(01)00683-5

    Article  CAS  Google Scholar 

  29. Zeng D, Zhang H, Wang B, Sang K, Yang J (2015) Effect of Ammonia concentration on silica spheres morphology and solution hydroxyl concentration in Stober process. J Nanosci Nanotechnol 15:7407–7411. https://doi.org/10.1166/jnn.2015.10595

    Article  CAS  PubMed  Google Scholar 

  30. Vacassy R, Flatt RJ, Hofmann H, Choi KS, Singh RK (2000) Synthesis of microporous silica spheres. J Colloid Interface Sci 227:302–315. https://doi.org/10.1006/jcis.2000.6860

    Article  CAS  PubMed  Google Scholar 

  31. Bogush GH, Tracy MA, Zukoski CF (1988) Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids 104:95–106. https://doi.org/10.1016/0022-3093(88)90187-1

    Article  CAS  Google Scholar 

  32. Lee K, Sathyagal AN, McCormick AV (1998) A closer look at an aggregation model of the Stöber process. Colloids Surf Physicochem Eng Aspects 144:115–125. https://doi.org/10.1016/S0927-7757(98)00566-4

    Article  CAS  Google Scholar 

  33. Gao W, Rigout M, Owens H (2016) Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals. J Nanopart Res 18:387. https://doi.org/10.1007/s11051-016-3691-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kharchenko A, Myronyuk O, Melnyk L (2017) Analysis of methods of regulation of silicon dioxide particles size obtained by the Stober method. Technol Audit prod Reserves 2:9–16. https://doi.org/10.15587/2312-8372.2018.128571

    Article  Google Scholar 

  35. Araújo-Neto RP, Silva-Freitas EL, Carvalho JF, Pontes TRF, Silva KL, Damasceno IHM, Egito EST et al (2014) Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater 364:72–79. https://doi.org/10.1016/j.jmmm.2014.04.001

    Article  CAS  Google Scholar 

  36. Yan Y, Fu J, Xu L, Wang T, Lu X (2016) Controllable synthesis of SiO2 nanoparticles: effects of ammonia and tetraethyl orthosilicate concentration. Micro Nano Lett 11:885–889. https://doi.org/10.1049/mnl.2016.0434

    Article  CAS  Google Scholar 

  37. Liu Q, Xu N, Liu L, Li J, Zhang Y, Shen C, Shezad K et al (2017) Dacarbazine-loaded hollow mesoporous silica nanoparticles grafted with folic acid for enhancing antimetastatic melanoma response. ACS Appl Mater Interfaces 9:21673–21687. https://doi.org/10.1021/acsami.7b05278

    Article  CAS  PubMed  Google Scholar 

  38. Fang X, Chen C, Liu Z, Liu P, Zheng N (2011) A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 3:1632–1639. https://doi.org/10.1039/C0NR00893A

    Article  CAS  PubMed  Google Scholar 

  39. Thahir R, Wahab AW, Nafie NL, Raya I (2019) Synthesis of high surface area mesoporous silica SBA-15 by adjusting hydrothermal treatment time and the amount of polyvinyl alcohol. Open Chem 17:963–971. https://doi.org/10.1515/chem-2019-0106

    Article  CAS  Google Scholar 

  40. Ortiz-Islas E, Sosa-Arróniz A, Manríquez-Ramírez ME, Rodríguez-Pérez CE, Tzompantzi F, Padilla JM (2021) Mesoporous silica nanoparticles functionalized with folic acid for targeted release Cis-Pt to glioblastoma cells. Rev Adv Mater Sci 60:25–37. https://doi.org/10.1515/rams-2021-0009

    Article  CAS  Google Scholar 

  41. Lim J-S, Lee K, Choi J-N, Hwang Y-K, Yun M-Y, Kim H-J, Won YS et al (2012) Intracellular protein delivery by hollow mesoporous silica capsules with a large surface hole. Nanotechnology 23:085101. https://doi.org/10.1088/0957-4484/23/8/085101

    Article  CAS  PubMed  Google Scholar 

  42. Shin H-S, Hwang Y-K, Huh S (2014) Facile preparation of ultra-large pore mesoporous silica nanoparticles and their application to the encapsulation of large guest molecules. ACS Appl Mater Interfaces 6:1740–1746. https://doi.org/10.1021/am404709w

    Article  CAS  PubMed  Google Scholar 

  43. Narayan R, Nayak UY, Raichur AM, Garg S (2018) Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10:118. https://doi.org/10.3390/pharmaceutics10030118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang X, Li X, Ito A, Yoshiyuki K, Sogo Y, Watanabe Y, Yamazaki A et al (2016) Hollow structure improved anti-cancer immunity of mesoporous silica nanospheres in vivo. Small 12:3510–3515. https://doi.org/10.1002/smll.201600677

    Article  CAS  PubMed  Google Scholar 

  45. Li CY, Qi N, Liu ZW, Zhou B, Chen ZQ, Wang Z (2016) Effect of synthesis temperature on the ordered pore structure in mesoporous silica studied by positron annihilation spectroscopy. Appl Surf Sci 363:445–450. https://doi.org/10.1016/j.apsusc.2015.12.055

    Article  CAS  Google Scholar 

  46. Porrang S, Davaran S, Rahemi N, Allahyari S, Mostafavi E (2022) How advancing are mesoporous silica nanoparticles? A comprehensive review of the literature. Int J Nanomedicine 17:1803–1827. https://doi.org/10.2147/IJN.S353349

    Article  PubMed  PubMed Central  Google Scholar 

  47. Adam A, Parkhomenko K, Duenas-Ramirez P, Nadal C, Cotin G, Zorn P-E, Choquet P et al (2021) Orienting the pore morphology of core-shell magnetic mesoporous silica with the sol-gel temperature. Influence on MRI and magnetic hyperthermia properties. Molecules 26:971. https://doi.org/10.3390/molecules26040971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nandy S, Kundu D, Naskar MK (2014) Synthesis of mesoporous Stöber silica nanoparticles: the effect of secondary and tertiary alkanolamines. J Sol-Gel Sci Technol 72:49–55. https://doi.org/10.1007/s10971-014-3420-7

    Article  CAS  Google Scholar 

  49. Fu J, Shao Y, Shi C, Bu W, Zhu Y (2014) Selective intracellular free radical generation against cancer cells by bioactivation of low-dose artesunate with a functionalized mesoporous silica nanosystem. J Mater Chem B 2:6984–6994. https://doi.org/10.1039/C4TB01288G

    Article  CAS  PubMed  Google Scholar 

  50. Su G, Yang C, Zhu J-J (2015) Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Langmuir 31:817–823. https://doi.org/10.1021/la504041f

    Article  CAS  PubMed  Google Scholar 

  51. Miralinaghi P, Kashani P, Moniri E, Miralinaghi M (2019) Non-linear kinetic, equilibrium, and thermodynamic studies of 5-fluorouracil adsorption onto chitosan–functionalized graphene oxide. Mater Res Express 6:065305. https://doi.org/10.1088/2053-1591/ab0831

    Article  CAS  Google Scholar 

  52. Kanth VR, Kajjari PB, Madalageri PM, Ravindra S, Manjeshwar LS, Aminabhavi TM (2017) Blend hydrogel microspheres of carboxymethyl chitosan and gelatin for the controlled release of 5-Fluorouracil. Pharmaceutics 9:13. https://doi.org/10.3390/pharmaceutics9020013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sethi A, Ahmad M, Huma T, Khalid I, Ahmad I (2021) Evaluation of low molecular weight cross linked chitosan nanoparticles, to enhance the bioavailability of 5-Flourouracil. Dose-Response 19:15593258211025353. https://doi.org/10.1177/15593258211025353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Almomen A, El-Toni AM, Badran M, Alhowyan A, Abul Kalam M, Alshamsan A, Alkholief M (2020) The design of anionic surfactant-based amino-functionalized mesoporous silica nanoparticles and their application in transdermal drug delivery. Pharmaceutics 12:1035. https://doi.org/10.3390/pharmaceutics12111035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Narayan R, Gadag S, Mudakavi RJ, Garg S, Raichur AM, Nayak Y, Kini SG et al (2021) Mesoporous silica nanoparticles capped with chitosan-glucuronic acid conjugate for pH-responsive targeted delivery of 5-fluorouracil. J Drug Deliv Sci Technol 63:102472. https://doi.org/10.1016/j.jddst.2021.102472

    Article  CAS  Google Scholar 

  56. Narayan R, Gadag S, Garg S, Nayak UY (2022) Understanding the effect of functionalization on loading capacity and release of drug from mesoporous silica nanoparticles: a computationally driven study. ACS Omega 7:8229–8245. https://doi.org/10.1021/acsomega.1c03618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. She X, Chen L, Li C, He C, He L, Kong L (2015) Functionalization of hollow mesoporous silica nanoparticles for improved 5-FU loading. J Nanomater 2015:872035. https://doi.org/10.1155/2015/872035

    Article  CAS  Google Scholar 

  58. Li Y, Li N, Pan W, Yu Z, Yang L, Tang B (2017) Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces 9:2123–2129. https://doi.org/10.1021/acsami.6b13876

    Article  CAS  PubMed  Google Scholar 

  59. Jiao Y, Guo J, Shen S, Chang B, Zhang Y, Jiang X, Yang W (2012) Synthesis of discrete and dispersible hollow mesoporous silica nanoparticles with tailored shell thickness for controlled drug release. J Mater Chem 22:17636–17643. https://doi.org/10.1039/C2JM31821K

    Article  CAS  Google Scholar 

  60. Nguyen NH, Truong-Thi N-H, Nguyen DTD, Ching YC, Huynh NT, Nguyen DH (2022) Non-ionic surfactants as co-templates to control the mesopore diameter of hollow mesoporous silica nanoparticles for drug delivery applications. Colloids Surf Physicochem Eng Aspects 655:130218. https://doi.org/10.1016/j.colsurfa.2022.130218

    Article  CAS  Google Scholar 

  61. Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VSY (2011) Interaction of Mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5:1366–1375. https://doi.org/10.1021/nn103077k

    Article  CAS  PubMed  Google Scholar 

  62. Lin Y-S, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842. https://doi.org/10.1021/ja910846q

    Article  CAS  PubMed  Google Scholar 

  63. Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5:5717–5728. https://doi.org/10.1021/nn2013904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Song K, Tang Z, Song Z, Meng S, Yang X, Guo H, Zhu Y et al (2022) Hyaluronic acid-functionalized mesoporous silica nanoparticles loading simvastatin for targeted therapy of atherosclerosis. Pharmaceutics 14:1265. https://doi.org/10.3390/pharmaceutics14061265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The data presented in this manuscript is part of a Ph.D. thesis conducted by Amirhossein Babaei.

Funding

This work was supported by the research deputy of Mazandaran University of Medical Sciences [grant number: 8488].

Author information

Authors and Affiliations

Authors

Contributions

AB: Conceptualization, Investigation, Methodology, Writing - Original Draft, Writing - Review & Editing PE: Supervision, Writing - Review & Editing JA: Resources.

Corresponding author

Correspondence to Pedram Ebrahimnejad.

Ethics declarations

Ethics Approval

The Ethics Committee of the Mazandaran University of Medical Sciences approved this research (approval number: IR.MAZUMS.REC.1399.8488).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, A., Ebrahimnejad, P. & Akbari, J. Applying I-Optimal Design for Tuning Internal Cavity of Hollow Mesoporous Silica Nanoparticles for 5-Fluorouracil Delivery: Investigating Drug-Loading/Releasing Behavior and Biocompatibility Properties. Silicon 16, 909–927 (2024). https://doi.org/10.1007/s12633-023-02722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02722-x

Keywords

Navigation