Skip to main content
Log in

Device Engineering of Highly-Efficient Eco-Friendly Novel FASnI3 Based Tandem Photovoltaic Cells

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Power Conversion Efficiency (PCE) of Silicon-based Solar Cells (SiSC) has nearly stagnated, which has led to extensive research in area of the Perovskite Solar Cell (PSC) as well as their tandem configuration with SiSC to achieve high PCE Perovskite-Silicon Tandem Solar Cell (TSC). However, existence of lead together with instability of perovskite is a key challenge which requires exploring non-toxic perovskite material. This work focuses on investigating and optimizing a novel lead-free absorber material Formamidinium Tin Iodide (FASnI3) and a lead-based MAPbI3 for PSCs, analyzing their performance by considering the optimization of absorber thickness, interface defects and electrical properties in standalone configurations; and further, it is followed by realizing tandem configuration of FASnI3 and MAPbI3 based PSC as top cells with SiSC as bottom cell. Two terminal (2-T) monolithic TSC has been designed by calculating transmitted filtered spectrum of top cell through transfer matrix approach & current matching techniques. Through altering the perovskite layer thickness, the present investigation has focused on examining current (JSC) matching conditions in between top PSC & bottom SiSC. The optimized thickness values for FASnI3 and MAPbI3 has been observed to be, respectively, 175 nm and 260 nm. Optimized Standalone PSCs based on FASnI3 and MAPbI3 exhibit PCE of 27.63 % and 30.90 %, respectively. A lead-free TSC with FASnI3 on Si exhibits PCE of 31.99 % (VOC: 2.29 V; JSC: 18.62 mA/cm2) in contrast to a lead-based TSC of MAPbI3 on Si delivering PCE of 40.60 % (VOC: 2.32 V; JSC: 19.30 mA/cm2). This work can be an useful contribution to understand comparative differences between lead-based and lead-free TSC, and to realize lead-free, highly-efficient eco-friendly perovskite-silicon TSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable (NA).

References

  1. Sharma S, Basu S, Shetti NP, Aminabhavi TM (2020) Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy. Sci Total Environ 713. https://doi.org/10.1016/j.scitotenv.2020.136633

  2. Seker S, Aydin N (2020) Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. Int J Hydrog Energy 45:15855–15868. https://doi.org/10.1016/j.ijhydene.2019.12.183

    Article  CAS  Google Scholar 

  3. Abdelaziz S, Zekry A, Shaker A, Abouelatta M (2022) Investigation of lead-free MASnI3-MASnIBr2 tandem solar cell: numerical simulation. Opt Mater (Amst) 123. https://doi.org/10.1016/j.optmat.2021.111893

  4. Essig S, Allebé C, Remo T et al (2017) Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2: https://doi.org/10.1038/nenergy.2017.144

  5. Leijtens T, Bush KA, Prasanna R, McGehee MD (2018) Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy 3:828–838. https://doi.org/10.1038/s41560-018-0190-4

    Article  CAS  Google Scholar 

  6. Yamaguchi M, Lee KH, Araki K, Kojima N (2018) A review of recent progress in heterogeneous silicon tandem solar cells. J Phys D Appl Phys 51. https://doi.org/10.1088/1361-6463/aaaf08

  7. Kalaiselvi CR, Muthukumarasamy N, Velauthapillai D et al (2018) Importance of halide perovskites for next generation solar cells – a review. Mater Lett 219:198–200. https://doi.org/10.1016/j.matlet.2018.02.089

    Article  CAS  Google Scholar 

  8. Nande A, Raut S, Dhoble SJ (2021) Perovskite solar cells. Energy Mater Fundam to Appl 249–281. https://doi.org/10.1016/B978-0-12-823710-6.00002-9

  9. Singh P, Kumar A (2023) Device engineering of double perovskite based solar cells towards high-performance, eco-friendly solar cells. Opt Quant Electron 55. https://doi.org/10.1007/s11082-023-04580-8

  10. Hossain MK, Mohammed MKA, Pandey R et al (2023) Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 Perovskite solar cells. Energy and Fuels. https://doi.org/10.1021/acs.energyfuels.3c00035

  11. Shrivastav N, Kashyap S, Madan J et al (2023) Perovskite-CIGS monolithic tandem solar cells with 29.7% efficiency: a numerical study. Energy and Fuels 37:3083–3090. https://doi.org/10.1021/acs.energyfuels.2c03973

    Article  CAS  Google Scholar 

  12. Chiu PT, Law DC, Woo RL et al (2014) 35.8% space and 38.8% terrestrial 5J direct bonded cells. 2014 IEEE 40th Photovolt spec Conf PVSC 2014 11–13. https://doi.org/10.1109/PVSC.2014.6924957

  13. Green MA, Hishikawa Y, Warta W et al (2017) Solar cell efficiency tables (version 50). Prog Photovolt Res Appl 25:668–676. https://doi.org/10.1002/pip.2909

    Article  Google Scholar 

  14. Duan L, Walter D, Chang N et al (2023) Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat Rev Mater 8. https://doi.org/10.1038/s41578-022-00521-1

  15. Leijtens T, Bush KA, Prasanna R, Mcgehee MD (2018) Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy 3:88–838. https://doi.org/10.1038/s41560-018-0190-4

    Article  CAS  Google Scholar 

  16. Chauhan S, Singh R (2023) Investigation of 2T Pb-free wide bandgap perovskite/c-Si tandem device through simulation by SCAPS-1D. Sadhana - Acad Proc Eng Sci 48. https://doi.org/10.1007/s12046-023-02100-8

  17. Dai L, Li S, Hu Y et al (2023) Three-terminal monolithic Perovskite/silicon tandem solar cell exceeding 29% power conversion efficiency. ACS Energy Lett 8:3839–3842. https://doi.org/10.1021/acsenergylett.3c01347

    Article  CAS  Google Scholar 

  18. Yu ZJ, Iii JVC, Holman ZC (2020) Tandem photovoltaic modules in the United States. Nat Energy 3:747–753

    Article  Google Scholar 

  19. Pandey R, Bhattarai S, Sharma K et al (2022) Halide composition engineered a non-toxic Perovskite-silicon tandem solar cell with 30.7% conversion efficiency. ACS Appl Electron Mater. https://doi.org/10.1021/acsaelm.2c01574

  20. Jhou J, Gaurav A, Lin H, Lin C (2023) Bandgap Tunable Perovskite for Si-Based Triple Junction Tandem Solar Cell: Numerical Analysis-Aided Experimental Investigation. ACS Appl Energy Mater 6:9434–9445. https://doi.org/10.1021/acsaem.3c01344

  21. Jayakrishnan AR, Silva JPB, Kamakshi K et al (2023) Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors? Prog Mater Sci 132. https://doi.org/10.1016/j.pmatsci.2022.101046

  22. Dastan D, Shan K, Jafari A et al (2023) Influence of heat treatment on H2S gas sensing features of NiO thin films deposited via thermal evaporation technique. Mater Sci Semicond Process 154. https://doi.org/10.1016/j.mssp.2022.107232

  23. Bryant D, Aristidou N, Pont S et al (2016) Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ Sci 9:1655–1660. https://doi.org/10.1039/c6ee00409a

    Article  CAS  Google Scholar 

  24. Juarez-Perez EJ, Wußler M, Fabregat-Santiago F et al (2014) Role of the selective contacts in the performance of lead halide perovskite solar cells. J Phys Chem Lett 5:680–685. https://doi.org/10.1021/jz500059v

    Article  CAS  PubMed  Google Scholar 

  25. Chen B, Ren N, Li Y et al (2022) Insights into the development of monolithic Perovskite/silicon tandem solar cells. Adv Energy Mater 12:1–20. https://doi.org/10.1002/aenm.202003628

    Article  CAS  Google Scholar 

  26. Fu F, Li J, Yang TCJ et al (2022) Monolithic Perovskite-silicon tandem solar cells: from the lab to fab? Adv Mater 34. https://doi.org/10.1002/adma.202106540

  27. Qiu W, Wu Y, Wang Y et al (2023) Low-temperature robust MAPbI3 perovskite solar cells with power conversion efficiency exceeding 22.4%. Chem Eng J 468. https://doi.org/10.1016/j.cej.2023.143656

  28. Prasanna JL, Goel E, Kumar A (2023) For performance limiting parameters. Opt Quantum Electron 55:610. https://doi.org/10.1007/s11082-023-04876-9

  29. Zhang N, Zhang Z, Liu T et al (2023) Efficient and stable MAPbI3 perovskite solar cells via green anti-solvent diethyl carbonate. Org Electron 113. https://doi.org/10.1016/j.orgel.2022.106709

  30. Mohammed MKA, Al-Mousoi AK, Majeed SM et al (2022) Stable hole-transporting material-free Perovskite solar cells with efficiency exceeding 14% via the introduction of a Malonic acid additive for a Perovskite precursor. Energy and Fuels 36:13187–13194. https://doi.org/10.1021/acs.energyfuels.2c02878

    Article  CAS  Google Scholar 

  31. Al-Mousoi AK, Mohammed MKA, Pandey R et al (2022) Simulation and analysis of lead-free perovskite solar cells incorporating cerium oxide as electron transporting layer. RSC Adv 12:32365–32373. https://doi.org/10.1039/d2ra05957f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohammed MKA, Singh S, Al-Mousoi AK et al (2022) Improving the potential of ethyl acetate green anti-solvent to fabricate efficient and stable perovskite solar cells. RSC Adv 12:32611–32618. https://doi.org/10.1039/d2ra05454j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Al-Mousoi KA, MKA M, Salih SQ et al (2022) Comparative study of the correlation between diffusion length of charge carriers and the performance of CsSnGeI3Perovskite solar cells. Energy and Fuels 36:14403–14410. https://doi.org/10.1021/acs.energyfuels.2c03390

    Article  CAS  Google Scholar 

  34. Shi Z, Guo J, Chen Y et al (2017) Lead-free organic–inorganic hybrid Perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater 29. https://doi.org/10.1002/adma.201605005

  35. Kartikay P, Paul A, Yella A, Mallick S (2023) Cation exchange enabled improved perovskite infiltration in triple-mesoscopic carbon perovskite solar cells. Mater Chem Phys 307. https://doi.org/10.1016/j.matchemphys.2023.128181

  36. Kour R, Arya S, Verma S et al (2019) Potential substitutes for replacement of Lead in Perovskite solar cells: a review. Glob Challenges 3:1900050. https://doi.org/10.1002/gch2.201900050

    Article  Google Scholar 

  37. Wang M, Wang W, Ma B et al (2021) Lead-free Perovskite materials for solar cells

  38. Mahajan P, Datt R, Chung Tsoi W et al (2021) Recent progress, fabrication challenges and stability issues of lead-free tin-based perovskite thin films in the field of photovoltaics. Coord Chem Rev 429. https://doi.org/10.1016/j.ccr.2020.213633

  39. Koh TM, Krishnamoorthy T, Yantara N et al (2015) Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J Mater Chem A 3:14996–15000. https://doi.org/10.1039/c5ta00190k

    Article  CAS  Google Scholar 

  40. Yokoyama T, Cao DH, Stoumpos CC, et al (2016) Overcoming Short-circuit in Lead-free CH 3 NH 3 SnI 3 Perovskite Solar Cells via Kinetically Controlled Gas-solid Reaction Film Fabrication Process. https://doi.org/10.1021/acs.jpclett.6b00118

  41. Shukla R, Kumar RR, Punetha D, Pandey SK (2023) Design perspective, fabrication, and performance analysis of Formamidinium tin halide Perovskite solar cell. IEEE J Photovoltaics 13:404–410. https://doi.org/10.1109/JPHOTOV.2023.3241793

    Article  Google Scholar 

  42. Liao W, Zhao D, Yu Y, et al (2016) Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6 . 22 %. 1–8. https://doi.org/10.1002/adma.201602992

  43. Jing X, Zhang Z, Chen T, Luo J (2023) Review of inorganic hole transport materials for Perovskite solar cells. Energy Technol 11. https://doi.org/10.1002/ente.202201005

  44. Lee SJ, Shin SS, Kim YC et al (2016) Fabrication of efficient Formamidinium tin iodide Perovskite solar cells through SnF2-Pyrazine complex. J Am Chem Soc 138:3974–3977. https://doi.org/10.1021/jacs.6b00142

    Article  CAS  PubMed  Google Scholar 

  45. Hao F, Stoumpos CC, Cao DH et al (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photonics 8:489–494. https://doi.org/10.1038/nphoton.2014.82

    Article  CAS  Google Scholar 

  46. Hossain MK, Ishraque Toki GF, Samajdar DP et al (2023) Photovoltaic performance investigation of Cs3Bi2I9-based Perovskite solar cells with various charge transport channels using DFT and SCAPS-1D frameworks. Energy and Fuels 37:7380–7400. https://doi.org/10.1021/acs.energyfuels.3c00540

    Article  CAS  Google Scholar 

  47. Ke W, Priyanka P, Vegiraju S et al (2018) Dopant-free Tetrakis-Triphenylamine hole transporting material for efficient tin-based Perovskite solar cells. J Am Chem Soc 140:388–393. https://doi.org/10.1021/jacs.7b10898

    Article  CAS  PubMed  Google Scholar 

  48. Hossain MK, Toki GFI, Kuddus A et al (2023) Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: a combination of SCAPS-1D and wxAMPS study. Mater Chem Phys 308. https://doi.org/10.1016/j.matchemphys.2023.128281

  49. Handa T, Yamada T, Kubota H et al (2017) Photocarrier recombination and injection dynamics in long-term stable Lead-free CH3NH3SnI3 Perovskite thin films and solar cells. J Phys Chem C 121:16158–16165. https://doi.org/10.1021/acs.jpcc.7b06199

    Article  CAS  Google Scholar 

  50. Wang N, Zhou Y, Ju MG et al (2016) Heterojunction-depleted Lead-free Perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Adv Energy Mater 6:1–10. https://doi.org/10.1002/aenm.201601130

    Article  CAS  Google Scholar 

  51. Mohanty I, Mangal S, Singh UP (2021) Performance optimization of lead free-MASnI3/CIGS heterojunction solar cell with 28.7% efficiency: a numerical approach. Opt Mater (Amst) 122. https://doi.org/10.1016/j.optmat.2021.111812

  52. Al JH, Sarker S, Islam MS et al (2022) Supervised machine learning-aided SCAPS-based quantitative analysis for the discovery of optimum bromine doping in Methylammonium tin-based Perovskite (MASnI3- xBr x). ACS Appl Mater Interfaces 14:502–516. https://doi.org/10.1021/acsami.1c15030

    Article  CAS  Google Scholar 

  53. Xu Y, Jiang K, Wang P et al (2022) Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells. New J Chem 46(5):2259–2265. https://doi.org/10.1039/D1NJ05178D

    Article  CAS  Google Scholar 

  54. Kumar A, Punetha D, Chakrabarti S (2023) Performance optimization of phenylethylammonium-formamidinium tin iodide perovskite solar cell by contrasting various ETL and HTL materials. J Nanopart Res 25. https://doi.org/10.1007/s11051-023-05702-9

  55. Liang Z, Shi Y, Yuan T et al (2023) Distinct reaction route toward high photovoltaic performance: Perovskite salts versus crystals. ACS Appl Energy Mater 6:2247–2256. https://doi.org/10.1021/acsaem.2c03408

    Article  CAS  Google Scholar 

  56. Bhattarai S, Sharma A, Das TD (2020) Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI3 active layer. Optik (Stuttg) 224. https://doi.org/10.1016/j.ijleo.2020.165430

  57. Xiao Z, Dong Q, Bi C et al (2014) Solvent annealing of Perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26:6503–6509. https://doi.org/10.1002/adma.201401685

    Article  CAS  PubMed  Google Scholar 

  58. Wang R, Wang J, Tan S et al (2019) Opportunities and challenges of Lead-free Perovskite optoelectronic devices. Trends Chem 1:368–379. https://doi.org/10.1016/j.trechm.2019.04.004

    Article  CAS  Google Scholar 

  59. Zhao Y, Zhu K (2016) Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 45:655–689. https://doi.org/10.1039/c4cs00458b

    Article  CAS  PubMed  Google Scholar 

  60. Raghvendra KRR, Pandey SK (2019) Performance evaluation and material parameter perspective of eco-friendly highly efficient CsSnGeI3 perovskite solar cell. Superlattice Microst 135. https://doi.org/10.1016/j.spmi.2019.106273

  61. Wu T, Liu X, Luo X et al (2022) Heterogeneous FASnI3 absorber with enhanced electric field for high-performance Lead-free Perovskite solar cells. Nano-Micro Lett 14:1–14. https://doi.org/10.1007/s40820-022-00842-4

    Article  CAS  Google Scholar 

  62. Zhu Z, Jiang X, Yu D et al (2022) Smooth and compact FASnI3Films for Lead-free Perovskite solar cells with over 14% efficiency. ACS Energy Lett 2079–2083. https://doi.org/10.1021/acsenergylett.2c00776

  63. Islam T, Jani R, Islam AF, Islam MT, Jani MR, Islam AF, Shorowordi KM, Chowdhury S, Nishat SS, Ahmed S (2021). IEEE Trans Electron Devices 68:618–625

    Article  CAS  Google Scholar 

  64. Bhattarai S, Pandey R, Madan J, Sahoo GS, Hossain I, Wabaidur SM, Ansari MZ (2023) Numerical investigation of toxic free perovskite solar cells for achieving high efficiency. Mater Today Commun 35:105893. https://doi.org/10.1016/j.mtcomm.2023.105893

    Article  CAS  Google Scholar 

  65. Bush KA, Palmstrom AF, Yu ZJ et al (2017) 23.6%-efficient monolithic Perovskite/silicon tandem solar cells with improved stability. Nat Energy 2:1–7. https://doi.org/10.1038/nenergy.2017.9

    Article  CAS  Google Scholar 

  66. Singh AK, Chauhan MS, Patel SP et al (2023) MAPbI3-on-CuInSe2 two-terminal monolithically integrated and four-terminal mechanically stacked tandem solar cells: a theoretical investigation using SCAPS-1D. Results Opt 10:1–8. https://doi.org/10.1016/j.rio.2023.100358

  67. Saeed A, Mousa M, Salah MM et al (2022) Design and simulation of ETL-free Perovskite/Si tandem cell with 33% efficiency. WSEAS Trans Electron 13:137–141. https://doi.org/10.37394/232017.2022.13.18

    Article  Google Scholar 

  68. Azri F, Meftah A, Sengouga N, Meftah A (2019) Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol Energy 181:372–378. https://doi.org/10.1016/j.solener.2019.02.017

    Article  CAS  Google Scholar 

  69. Abdelaziz S, Zekry A, Shaker A, Abouelatta M (2020) Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt Mater (Amst) 101:109738. https://doi.org/10.1016/j.optmat.2020.109738

    Article  CAS  Google Scholar 

  70. Khattak YH, Baig F, Shuja A et al (2020) Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol Energy 207:579–591. https://doi.org/10.1016/j.solener.2020.07.012

    Article  CAS  Google Scholar 

  71. Lakhdar N, Hima A (2020) Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt Mater (Amst) 99:109517. https://doi.org/10.1016/j.optmat.2019.109517

    Article  CAS  Google Scholar 

  72. Burgelman M, Marlein J (2008) Analysis of graded band GAP solar cells with scaps. Proc 23rd Eur Photovolt Sol Energy Conf Val 2151-2:69–73

    Google Scholar 

  73. Madan J, Shivani PR, Sharma R (2020) Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol Energy 197:212–221. https://doi.org/10.1016/j.solener.2020.01.006

    Article  CAS  Google Scholar 

  74. Dixit H, Porwal S, Boro B et al (2022) A theoretical exploration of lead-free double perovskite La2NiMnO6 based solar cell via SCAPS-1D. Opt Mater (Amst) 131:1–11. https://doi.org/10.1016/j.optmat.2022.112611

    Article  CAS  Google Scholar 

  75. Islam MT, Jani MR, Al Amin SM, et al (2020) Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device. Opt Mater (Amst) 105:. https://doi.org/10.1016/j.optmat.2020.109957

  76. Qian J, Xu B, Tian W (2016) A comprehensive theoretical study of halide perovskites ABX3. Org Electron 37:61–73. https://doi.org/10.1016/j.orgel.2016.05.046

    Article  CAS  Google Scholar 

  77. Nassah Y, Benmakhlouf A, Hadjeris L et al (2023) Electronic band structure, mechanical and optical characteristics of new lead-free halide perovskites for solar cell applications based on DFT computation. Bull Mater Sci 46. https://doi.org/10.1007/s12034-023-02890-x

  78. Pachori S, Agarwal R, Shukla A, et al (2021) Mechanically stable with highly absorptive formamidinium lead halide perovskites [(HC(NH2)2PbX3; X = Br, Cl]: Recent advances and perspectives. Int J Quantum Chem 121:1–16. https://doi.org/10.1002/qua.26671

  79. Korabel'nikov DV, Zhuravlev YN (2023) Pressure-induced tuning of structure and electronic properties in lead-free hybrid halide perovskite HC(NH2)2SnI3 for photovoltaic solar cells. Mater Sci Eng B Solid-State Mater Adv Technol 293. https://doi.org/10.1016/j.mseb.2023.116468

  80. Xie P, Xiao H, Qiao Y et al (2023) Radical reinforced defect passivation strategy for efficient and stable MAPbI3 perovskite solar cells fabricated in air using a green anti-solvent process. Chem Eng J 462. https://doi.org/10.1016/j.cej.2023.142328

  81. Yoshikawa K, Kawasaki H, Yoshida W et al (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2. https://doi.org/10.1038/nenergy.2017.32

  82. Que M, Zhang B, Chen J et al (2023) Dual ions Passivating FAPbBr3 Perovskite quantum dot films via a vacuum drying method for stable and efficient solar cells with an ultrahigh open-circuit voltage of over 1.67 V. ACS Appl Energy Mater 6:3486–3494. https://doi.org/10.1021/acsaem.3c00009

    Article  CAS  Google Scholar 

  83. Lei Y, Xu Y, Wang M et al (2021) Origin, influence, and countermeasures of defects in Perovskite solar cells. Small 17:1–26. https://doi.org/10.1002/smll.202005495

    Article  CAS  Google Scholar 

  84. Dipta SS, Uddin A, Conibeer G (2022) Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling. Heliyon 8. https://doi.org/10.1016/j.heliyon.2022.e11380

  85. Jani R, Islam T, Muhammad S, et al (2020) Superlattices and Microstructures Exploring solar cell performance of inorganic Cs 2 TiBr 6 halide double perovskite : A numerical study. 146:1–13

  86. Shubham R, Pathak C, Pandey SK (2020) Design, performance, and defect density analysis of efficient eco-friendly Perovskite solar cell. IEEE Trans Electron Devices 67:2837–2843. https://doi.org/10.1109/TED.2020.2996570

    Article  CAS  Google Scholar 

  87. Cao Z, Li C, Deng X et al (2020) Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO2and SnO2. J Mater Chem A 8:19768–19787. https://doi.org/10.1039/d0ta07282f

    Article  CAS  Google Scholar 

  88. Al Mahdi H, Leahy PG, Morrison AP (2023) Experimentally derived models to detect onset of shunt resistance degradation in photovoltaic modules. Energy Rep 10:604–612. https://doi.org/10.1016/j.egyr.2023.07.019

    Article  Google Scholar 

  89. Simya OK, Mahaboobbatcha A, Balachander K (2015) A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattice Microst 82:248–261. https://doi.org/10.1016/j.spmi.2015.02.020

    Article  CAS  Google Scholar 

  90. Duha AU, Borunda MF (2022) Optimization of a Pb-free all-perovskite tandem solar cell with 30.85% efficiency. Opt Mater (Amst) 123:111891. https://doi.org/10.1016/j.optmat.2021.111891

    Article  CAS  Google Scholar 

  91. Larsen-Olsen TT, Andersen TR, Andreasen B et al (2012) Roll-to-roll processed polymer tandem solar cells partially processed from water. Sol Energy Mater Sol Cells 97:43–49. https://doi.org/10.1016/j.solmat.2011.08.025

    Article  CAS  Google Scholar 

  92. Jung ED, Kim CU, Noh YW et al (2023) Aesthetic and efficient perovskite/Si tandem solar cells using luminescent down-shifting textured anti-reflection films. EcoMat 1–11. https://doi.org/10.1002/eom2.12399

  93. Ait Abdelkadir A, Oublal E, Sahal M et al (2023) Numerical simulation and optimization of n-Al-ZnO/n-CdS/p-CIGS/p-Si/p-MoOx/Mo tandem solar cell. Silicon 15:2125–2135. https://doi.org/10.1007/s12633-022-02144-1

    Article  CAS  Google Scholar 

  94. Singh VK, Srivastava S, Singh AK et al (2023) Theoretical study of highly efficient all-inorganic Sb2S3-on-Si monolithically integrated (2-T) and mechanically stacked (4-T) tandem solar cells using SCAPS-1D. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-25292-2

  95. Akoto E, Isahi V, Odari V et al (2023) Results in optics monolith Cs 1-x Rb x SnI 3 perovskite – silicon 2T tandem solar cell using Scaps -1D. Results Opt 12:1–14. https://doi.org/10.1016/j.rio.2023.100470

    Article  Google Scholar 

Download references

Acknowledgment

Department of Science & Technology (DST), Government of India (GOI) is thanked by the authors for the financial support given for the current work under the DST SERB Project (File No.SRG/2021/002110). Dr. Amitesh Kumar would like to express his gratitude to DST for awarding a Startup Research Grant. Mr. Parshuram Singh thanks the MIE (Ministry of Education) as well as NIT Patna for the research fellowship. Research facilities have been provided by NIT Patna, for which the authors are grateful.

Funding

Authors acknowledge Department of Science & Technology (DST), Govt. of India for financial assistance provided under DST SERB Project (File No. SRG/2021/002110) to carry out present work.

Author information

Authors and Affiliations

Authors

Contributions

PS: Conceptualization, Methodology, Software, Data curation, Visualization, Investigation Writing—Original draft preparation. AK: Conceptualization, Methodology, Supervision, Reviewing and Editing. Visualization, Investigation.

Corresponding author

Correspondence to Amitesh Kumar.

Ethics declarations

Ethical Approval

NA. The work presented in this manuscript is about designing Solar cell. Animals or living things have not been used in any experiments. Consequently, it is not necessary to obtain ethics committee permission.

Consent for Publication

According to journal rules, authors have granted their consent for publication.

Consent to Participate

NA

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Kumar, A. Device Engineering of Highly-Efficient Eco-Friendly Novel FASnI3 Based Tandem Photovoltaic Cells. Silicon 16, 687–701 (2024). https://doi.org/10.1007/s12633-023-02717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02717-8

Keywords

Navigation