Skip to main content
Log in

Characterization of Mechanical and Radiation Shielding Ability of CdO - SiO2 - B2O3 - MoO3 - LiF Glasses

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The successful synthesis of the novel composition glass system with the empirical formula (9CdO + 11SiO2 + 64B2O3 +(2-x) LiF +(14+x) MoO3 for x = 0, 0.5, 1, 1.5, and 2 mole %) has been fabricated. The density increased from 2.87 to 3.25 g/cm3 while the molar volume decreased from 29.04 to 26.37 m3/mol. The longitudinal (\({V}_{l}\)) increase from 4740 to 4855 m/s and shear (\({V}_{t}\)) velocity increase from 2635 to 2745 m/s. Elastic moduli of the glass sample also exhibit an increasing behavior with greater MoO3 concentration. Studies comparing experimental and theoretical elastic moduli reveal the same behavior. The Phy-X/PSD database was utilized to calculate the radiation protection values. With the substitution of MoO3 for LiF, the fundamental radiation shielding and significant parameters (\(MAC, LAC\), \({Z}_{eff}\), and \(\sum R\)) increase as G 5> G 4 > G 3 > G 2 > G 1. According to the results, the G 5 sample had the lowest HVL, TVL, and MFP of all the glasses, which can be ascribed to the sample's high density due to its high MoO3 content. According to this investigation, the G5 sample has the best radiation properties when photon energy is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript and associated personal data.

References

  1. Sanghi Sujata, Rani Sonam, Agarwal Ashish, Bhatnagar Veena (2010) Influence of Nb2O5 on the structure, optical and electrical properties of alkaline borate glasses. Mater Chem Phys 120(2–3):381–386. https://doi.org/10.1016/j.matchemphys.2009.11.016

    Article  CAS  Google Scholar 

  2. Al-Baradi AM, El-Rehim AFA, Alrowaili ZA, Al-Buriahi MS, Shaaban KS (2021) FT-IR and Gamma shielding characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5-x) LiF- x BaO glasses. Silicon 14(12):7043. https://doi.org/10.1007/s12633-021-01481-x

  3. El-Rehim AFA, Wahab EAA, Halaka MMA, Shaaban KS (2022) Optical properties of SiO2 – TiO2 – La2O3 – Na2O – Y2O3 glasses and a novel process of preparing the parent glass-ceramics. Silicon 14:373–384. https://doi.org/10.1007/s12633-021-01002-w

    Article  CAS  Google Scholar 

  4. Shaaban KS, Al-Baradi AM, Ali AM (2022) Investigation of BaO reinforced TiO2–P2O5–li2O glasses for optical and neutron shielding applications. RSC Adv 12(5):3036. https://doi.org/10.1039/d2ra00171c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaaban KS, Alomairy S, Al-Buriahi MS (2021) Optical thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. J Mater Sci Mater Electron 32:26034. https://doi.org/10.1007/s10854-021-05885-8

    Article  CAS  Google Scholar 

  6. Shaaban KS, Boukhris I, Kebaili I, Al-Buriahi MS (2022) Spectroscopic and attenuation shielding studies on B2O3-SiO2-LiF-ZnO-TiO2 glasses. Silicon 14(6):3091. https://doi.org/10.1007/s12633-021-01080-w

  7. Alrowaili ZA, Al-Baradi AM, Sayed MA, Mossad Ali A, Abdel Wahab EA, Al-Buriahi MS, Shaaban KS (2022) The impact of Fe2O3 on the dispersion parameters and gamma / fast neutron shielding characteristics of lithium borosilicate glasses. Optik 249:168259. https://doi.org/10.1016/j.ijleo.2021.168259

    Article  CAS  Google Scholar 

  8. Aljewaw OB, Karim MKA, Kamari HM, Zaid MHM, Salim AA, MhareB MHA (2022) Physical and spectroscopic characteristics of lithium-aluminium-borate glass: effects of varying Nd2O3 doping contents. J Non-Cryst Solids 575:121214. https://doi.org/10.1016/j.jnoncrysol.2021.121214

  9. Abdel Wahab EA, El-Maaref AA, Shaaban KS, Börcsök J, Abdelawwad M (2021) Lithium cadmium phosphate glasses doped Sm3+ as a host material for near-IR laser applications. Opt Mater 111:110638. https://doi.org/10.1016/j.optmat.2020.110638

    Article  CAS  Google Scholar 

  10. Shaaban KhS, Al-Baradi AM, Alotaibi BM, Abd El-Rehim AF (2023)Mechanical and radiation shielding features of lithium titanophosphate glasses doped Ba. J Mater Res Technol 23:756–764. https://doi.org/10.1016/j.jmrt.2023.01.062

  11. Shaaban KS, Alotaibi BM, Al-Baradi AM et al (2023) Exploration of the glass domain in the SiO2-B2O3-TiO2-La2O3 system. Silicon. https://doi.org/10.1007/s12633-023-02351-4

    Article  Google Scholar 

  12. Shaaban KS, Alrowaili ZA, Al-Baradi AM, Ali AM, Wahab EAA, Al-Buriahi MS (2021) Mechanical and thermodynamic characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5-x) LiF- x BaO glasses. Silicon 14(11):6457. https://doi.org/10.1007/s12633-021-01441-5

  13. Shaaban KS, Alyousef HA, El-Rehim AFA (2022) CeO2 reinforced B2O3–SiO2–MoO3 glass system: a characterization study through physical, mechanical and gamma / neutron shields characteristics. Silicon 14:12001. https://doi.org/10.1007/s12633-022-02124-5

    Article  CAS  Google Scholar 

  14. Al-Baradi AM, Wahab EAA, Shaaban KS (2022) Preparation and characteristics of B2O3 – SiO2 – Bi2O3 – TiO2 – Y2O3 glasses and glass-ceramics. Silicon 14:5277. https://doi.org/10.1007/s12633-021-01286-y

    Article  CAS  Google Scholar 

  15. Algarni SA, El-Maaref AA, Alotaibi BM, Alharbiy N, El-Rehim AFA, Wahab EAA, Shaaban KS (2022) Physical, optical, and radiation shielding features of yttrium lithium borate glasses. J Inorg Organomet Polym 32(8):2873. https://doi.org/10.1007/s10904-022-02321-0

  16. Shaaban KS, Alotaibi BM, Yousef ES (2023) Effect of La2O3 concentration on the structural, optical and radiation-shielding behaviors of titanate borosilicate glasses. J Electron Mater. https://doi.org/10.1007/s11664-023-10347-4

    Article  Google Scholar 

  17. Shaaban KhS, Al-Baradi AM, Alotaibi BM, El-Rehim AFA (2023) Mechanical and radiation shielding features of lithium titanophosphate glasses doped BaO. J Mater Res Technol 23:756–764. https://doi.org/10.1016/j.jmrt.2023.01.062

  18. Alyousef HA, Alrowaili ZA, Saad M, Al-Mohiy H, Alshihri AA, Shaaban KS, Al-Buriahi MS, Wahab EAA (2023) Examinations of mechanical, and shielding properties of CeO2 reinforced B2O3–ZnF2–Er2O3–ZnO glasses for gamma-ray shield and neutron applications. HLY 14435 9(3). https://doi.org/10.1016/j.heliyon.2023.e14435

  19. El-Rehim AFA, Shaaban KS, Zahran, Yahia HYIS, Ali AM, Halaka, Makhlouf SA, Wahab EAA, Shaaban ER (2021) Structural and mechanical properties of lithium bismuth borate glasses containing molybdenum (LBBM) together with their glass–ceramics. J Inorg Organomet Polym 31:1057–1065. https://doi.org/10.1007/s10904-020-01708-1

  20. Shaaban KS, Alotaibi BM, Alrowaili ZA, Al‑Buriahi MS, Ashour A, Sayed Y (2023) Thermal and mechanical studies of cerium molybdenum borosilicate glasses and glass–ceramics. Silicon. https://doi.org/10.1007/s12633-023-02433-3

  21. Olarinoye IO, Alomairy S, Sriwunkum C, Al-Buriahi MS (2021) Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys Scr 96(6):065308. https://doi.org/10.1088/1402-4896/abf26a

  22. Al-Buriahi MS, Sriwunkum C, Arslan H et al (2020) Investigation of barium borate glasses for radiation shielding applications. Appl Phys A 126:68. https://doi.org/10.1007/s00339-019-3254-9

    Article  CAS  Google Scholar 

  23. Al-Buriahi MS, Bakhsh EM, Tonguc B, Khan SB (2020) Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram Int 46(11):19078–19083. https://doi.org/10.1016/j.ceramint.2020.04.240

  24. Al-Buriahi MS (2023) Radiation shielding performance of a borate-based glass system doped with bismuth oxide. Radiat Phys Chem 207:110875. https://doi.org/10.1016/j.radphyschem.2023.110875

  25. Sayyed MI, Morshidy HY, Shaaban KhS, Abd El-Rehim AF, Ali Atif Mossad, Sadeq MS (2023) Impacts of BaO additions on structure, linear/nonlinear optical properties and radiation shielding competence of BaO–NiO–ZnO–B2O3 glasses. Opt Mater 144:114300. https://doi.org/10.1016/j.optmat.2023.114300

  26. Al-Buriahi MS, Alajerami YSM, Abouhaswa AS, Alalawi A, Nutaro T, Tonguc B (2020) Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J Non-Cryst Solids 544:120171–. https://doi.org/10.1016/j.jnoncrysol.2020.120171

  27. Al-Buriahi MS, Hegazy HH, Alresheedi F et al (2021) Effect of Sb2O3 addition on radiation attenuation properties of tellurite glasses containing V2O5 and Nb2O5. Appl Phys A 127:106. https://doi.org/10.1007/s00339-020-04265-z

    Article  CAS  Google Scholar 

  28. Al-Buriahi MS, Somaily HH, Alalawi A et al (2021) Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J Inorg Organomet Polym 31:1047–1056. https://doi.org/10.1007/s10904-020-01750-z

    Article  CAS  Google Scholar 

  29. Hegazy HH, Al-Buriahi MS, Alresheedi F et al (2021) The effects of TeO2 on polarizability, optical transmission, and photon/neutron attenuation properties of boro-zinc-tellurite glasses. J Inorg Organomet Polym 31:2331–2338. https://doi.org/10.1007/s10904-021-01933-2

    Article  CAS  Google Scholar 

  30. Alzahrani JS, Alothman MA, Eke C, Al-Ghamdi H, Aloraini DA, Al-Buriahi MS (2021) Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput Mater Sci 196:110566. https://doi.org/10.1016/j.commatsci.2021.110566

  31. Alshahrani B, Olarinoye IO, Mutuwong C, Sriwunkum C, Yakout HA,Tekin HO, Al-Buriahi MS (2021) Amorphous alloys with high Fe content for radiation shielding applications. Radiat Phys Chem 183:109386. https://doi.org/10.1016/j.radphyschem.2021.109386

  32. Saeed A, Alomairy S, Sriwunkum C, Al-Buriahi MS (2021) Neutron and charged particle attenuation properties of volcanic rocks. Radiat Phys Chem 184:109454–. https://doi.org/10.1016/j.radphyschem.2021.109454

  33. Al-Buriahi MS, Alomairy S, Mutuwong C (2021) Effects of MgO addition on the radiation attenuation properties of 45S5 bioglass system at the energies of medical interest: an in silico study. J Aust Ceram Soc 57:1107–1115. https://doi.org/10.1007/s41779-021-00605-1

    Article  CAS  Google Scholar 

  34. Shaaban KS, Basha B, Alrowaili ZA, Al-Buriahi MS, Abdel Wahab EAA (2023) closer inspection of the structural, mechanical, optical and radiation shielding properties of GeO2-doped magnesium-telluroborate glasses. Radiochimica Acta 111(9):713–724. https://doi.org/10.1515/ract-2023-0140

    Article  CAS  Google Scholar 

  35. Al-Buriahi MS, Singh VP (2020) Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. J Aust Ceram Soc 56:1127–1133. https://doi.org/10.1007/s41779-020-00457-1

    Article  CAS  Google Scholar 

  36. Şakar E, Özpolat ÖF, Alım B, Sayyed MI, Kurudirek M (2020) PhyX / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem 166:108496. https://doi.org/10.1016/j.radphyschem

  37. Rammah YS, El-Agawany FI, Wahab EAA, Hessien MM, Shaaban KS (2022) Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiat Phys Chem 193:109956. https://doi.org/10.1016/j.radphyschem.2021.109956

    Article  CAS  Google Scholar 

  38. Shaaban KS, Alotaibi BM, Alharbiy N, Al-Baradi AM, El-Rehim AFA (2022) Impact of TiO2 on DTA and elastic moduli of calcium potassium borophosphosilicate glasses in prelude for use in dental and orthopedic applications. Silicon 14:11991. https://doi.org/10.1007/s12633-022-02029-3

    Article  CAS  Google Scholar 

  39. Mahmoud KH, Elsayed KA, Wahab EAA et al (2021) Structural and radiation shielding simulation of B2O3–SiO2–LiF–ZnO–TiO2 glasses. J Mater Sci Mater Electron 32:16182–16193. https://doi.org/10.1007/s10854-021-06165-1

    Article  CAS  Google Scholar 

  40. Shaaban KS, Alotaibi BM, Algarni SA, Alharbiy N, Wahab EAA (2022) Chemical composition, mechanical, and thermal characteristics of bioactive glass for better processing features. Silicon 14:10817–10826. https://doi.org/10.1007/s12633-022-01784-7

    Article  CAS  Google Scholar 

  41. El-Rehim AFA, Ali AM, Zahran HY, Yahia IS, Shaaban KS (2021) Spectroscopic, structural, thermal, and mechanical properties of B2O3-CeO2-PbO2 glasses. J Inorg Organomet Polym 31:1774. https://doi.org/10.1007/s10904-020-01799-w

    Article  CAS  Google Scholar 

  42. Shaaban KS, Al-Baradi AM, Ali AM (2022) Gamma-ray shielding and mechanical characteristics of iron-doped lead phosphosilicate glasses. Silicon 14:8971. https://doi.org/10.1007/s12633-022-01702-x

    Article  CAS  Google Scholar 

  43. Alomairy S, Aboraia AM, Shaaban ER, Shaaban KS (2021) Comparative studies on spectroscopic and crystallization properties of Al2O3 -Li2O- B2O3-TiO2 glasses. Braz J Phys 51:1237. https://doi.org/10.1007/s13538-021-00928-1

    Article  CAS  Google Scholar 

  44. Wahab EAA, Shaaban KS, Al-Baradi AM (2022) Enhancement of optical and physical parameters of lead zinc silicate glasses by doping W+3 ions. Silicon 14:4915. https://doi.org/10.1007/s12633-021-01236-8

    Article  CAS  Google Scholar 

  45. Fayad AM, Shaaban KS, Abd-Allah WM, Ouis M (2020) Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation. J Inorg Organomet Polym 30:5042–5052. https://doi.org/10.1007/s10904-020-01641-3

  46. Sayed MA, Ali AM, Abd El-Rehim AF, Abdel Wahab EA, Shaaban KS (2021) Dispersion parameters, polarizability, and basicity of lithium phosphate glasses. J Electron Mater 50:3116–3128. https://doi.org/10.1007/s11664-021-08921-9

  47. El-Maaref AA, Al-Hosiny NM, Alyousef Haifa A, El-Agmy RM, Shaaban Kh S, Wahab EAA (2022) Effect of CeO2/Er2O3 co-doping on spectroscopic properties of zinc fluoroborate glasses. Phys Scr 97(12):125831. https://doi.org/10.1088/1402-4896/aca3db

  48. Shaaban KS, Alotaibi BM, Alharbiy N, El-Rehim AFA (2022) Fabrication of lithium borosilicate glasses containing Fe2O3 and ZnO for FT-IR, UV–Vis–NIR, DTA, and highly efficient shield. Appl Phys A 128:333. https://doi.org/10.1007/s00339-022-05474-4

  49. Shaaban KS, Al-Baradi AM, Wahab EAA (2022) The impact of Y2O3 on physical and optical characteristics, polarizability, optical basicity, and dispersion parameters of B2O3 – SiO2 – Bi2O3 – TiO2 glasses. Silicon 14:5057–5065. https://doi.org/10.1007/s12633-021-01309-8

    Article  CAS  Google Scholar 

  50. Shaaban KS, Alyousef HA, Alotaibi BM, El-Rehim AFA, Wahab EAA (2022) The vital role of TiO2 on the bioglass system P2O5-CaO-B2O3-SiO2- K2O for optics and shielding characteristics. J Inorg Organomet Polym 32:4295. https://doi.org/10.1007/s10904-022-02446-2

    Article  CAS  Google Scholar 

  51. Wahab EAA, Koubisy MSI, Sayyed M I, Mahmoud KA, Zatsepin AF, Makhlouf SA, Shaaban Kh S (2021) Novel borosilicate glass system: Na2B4O7-SiO2-MnO2: Synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding feature. J Non-Cryst Solids 553:120509. https://doi.org/10.1016/j.jnoncrysol.2020.120509

  52. Wahab EAA, Alyousef HA, El-Rehim AFA, Shaaban Kh S (2023) Basicity, optical features, and neutron/charged particle attenuation characteristics of P2O5-As2O3-PbO glasses doped with Tungsten Ions. J Electron Mater 52:219–236. https://doi.org/10.1007/s11664-022-09969-x

  53. Shaaban KS, Al-Baradi AM, Ali AM (2022) Physical, optical, and advanced radiation absorption characteristics of cadmium lead phosphate glasses containing MoO3. J Mater Sci Mater Electron 33:3297–3305. https://doi.org/10.1007/s10854-021-07530-w

    Article  CAS  Google Scholar 

  54. Allam EA, El-Sharkawy RM, Shaaban KhS, El-Taher A, Mahmoud ME, El Sayed Y Structural and thermal properties of nickel oxide nanoparticles doped cadmium zinc borate glasses: preparation and characterization. Digest J Nanomater Biostructures 17(1):161–170. https://doi.org/10.15251/DJNB.2022.171.161

  55. Shaaban KhS, Al-Baradi AM, Ali AM, Alotaibi BM (2022) Thermal, optical, and gamma/neutron radiation absorption of PbO-P2O5–SiO2-Na2O-Fe2O3 glasses. J Mater Res Technol 18:1909-1921. https://doi.org/10.1016/j.jmrt.2022.03.090

  56. Ali ZA, Al-Baradi MA, Al-Buriahi MS, Wahab EA, Shaaban KS (2022) A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Opt Quant Electr 54:88

    Article  Google Scholar 

  57. Shaaban KS, Zahran HY, Yahia IS, Elsaeedy HI, Shaaban ER, Makhlouf SA, Wahab EAA, Yousef ES (2020) Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses. Appl Phys A 126:804. https://doi.org/10.1007/s00339-020-03982-9

    Article  CAS  Google Scholar 

  58. Alyousef HA, Alrowaili ZA, Saad M, Al-Mohiy H, Alshihri AA, Shaaban KhS, Al-Buriahi MS, Wahab EAA (2023) Examinations of mechanical, and shielding properties of CeO2 reinforced B2O3–ZnF2–Er2O3–ZnO glasses for gamma-ray shield and neutron applications. Heliyon 9(3):E14435. https://doi.org/10.1016/j.heliyon.2023.e14435

  59. Shaaban KS, Al-Baradi AM, Ali AM (2022) The impact of Cr2O3 on the mechanical, physical, and radiation shielding characteristics of Na2B4O7–CaO–SiO2 glasses. Silicon 14:10375. https://doi.org/10.1007/s12633-022-01783-8

    Article  CAS  Google Scholar 

  60. El-Maaref AA, Alotaibi BM, Alharbi N, El-Rehim AFA, Shaaban KS (2022) Effect of Fe2O3 as an aggregate replacement on mechanical, and gamma/ neutron radiation shielding properties of phosphoaluminate glasses. J Inorg Organomet Polym 32(8):3117. https://doi.org/10.1007/s10904-022-02345-6.

  61. Makishima A, Mackenzie JD (1975) Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J Non-Cryst Solids 17(2):147–157. https://doi.org/10.1016/0022-3093(75)90047-2

    Article  CAS  Google Scholar 

  62. Makishima A, Mackenzie JD (1973) Direct calculation of Young’s moidulus of glass. J Non-Cryst Solids 12(1):35–45. https://doi.org/10.1016/0022-3093(73)90053-7

    Article  CAS  Google Scholar 

  63. Alomairy S, Alrowaili ZA, Kebaili I et al (2022) Synthesis of Pb3O4-SiO2-ZnO-WO3 glasses and their fundamental properties for gamma shielding applications. Silicon 14:5661–5671. https://doi.org/10.1007/s12633-021-01347-2

    Article  CAS  Google Scholar 

  64. Alrowaili ZA, Al-Baradi AM, Sayed MA, Ali AM, Wahab EAA, Al-Buriahi MS, Shaaban KhS (2022) The impact of Fe2O3 on the dispersion parameters and gamma/fast neutron shielding characteristics of lithium borosilicate glasses. Optik 249:168259. https://doi.org/10.1016/j.ijleo.2021.168259

  65. Alomairy S, Al-Buriahi MS, Abdel Wahab EA, Sriwunkum C, Shaaban K, Synthesis FTIR (2021) and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceram Int 47:17322. https://doi.org/10.1016/j.ceramint.2021.03.045

    Article  CAS  Google Scholar 

  66. El-Rehim AFA, Shaaban KS (2021) Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J Mater Sci Mater Electron 32:4651. https://doi.org/10.1007/s10854-020-05204-7

    Article  CAS  Google Scholar 

  67. Shaaban KS, Alyousef HA, Alotaibi BM, Abd El-Rehim AF, Wahab EAA (2022) The vital role of TiO2 on the bioglass system P2O5-CaO-B2O3-SiO2- K2O for optics and shielding characteristics. J Inorg Organomet Polym 32:4295–4303. https://doi.org/10.1007/s10904-022-02446-2

  68. Tonguc Baris T, Arslan Halil, Al-Buriahi Mohammed Sultan (2018) Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiat Phys Chem 153:86–91. https://doi.org/10.1016/j.radphyschem.2018.08.025

    Article  CAS  Google Scholar 

  69. Al-Buriahi MS, Tonguc BT (2020) Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat Phys Chem 166:108507–. https://doi.org/10.1016/j.radphyschem.2019.108507

  70. Al-Buriahi MS, Eke C, Alomairy S et al (2021) Micro-hardness and gamma-ray attenuation properties of lead iron phosphate glasses. J Mater Sci Mater Electron 32:13906–13916. https://doi.org/10.1007/s10854-021-05966-8

    Article  CAS  Google Scholar 

  71. Alothman MA, Olarinoye IO, Sriwunkum C et al (2022) Study of the radiation attenuation properties of MgO-Al2O3-SiO2-Li2O-Na2O glass system. J Aust Ceram Soc 58:267–273. https://doi.org/10.1007/s41779-021-00687-x

    Article  CAS  Google Scholar 

  72. Alharshan GA, Eke C, Al-Buriahi MS (2021) Radiation-transmission and self-absorption factors of P2O5–SrO–Sb2O3 glass system. Radiat Phys Chem. 109938. https://doi.org/10.1016/j.radphyschem.2021.109938

  73. Alzahrani JS, Alrowaili ZA, Saleh HH, Hammoud A, Alomairy S, Sriwunkum C, Al-Buriahi MS (2021) Synthesis, physical and nuclear shielding properties of novel Pb–Al alloys. Prog Nucl Energy 142:103992. https://doi.org/10.1016/j.pnucene.2021.103992

  74. Al-Buriahi MS, Alrowaili ZA, Alsufyani SJ et al (2022) The role of PbF2 on the gamma-ray photon, charged particles, and neutron shielding prowess of novel lead fluoro bismuth borate glasses. J Mater Sci Mater Electron 33:1123–1139. https://doi.org/10.1007/s10854-021-07382-4

    Article  CAS  Google Scholar 

  75. Al-Buriahi MS, Eke C, Alrowaili ZA, Al-Baradi AM, Kebaili I, Tonguc BT (2022) Optical properties and radiation shielding performance of tellurite glasses containing Li2O and MoO3. Optik 249:168257. https://doi.org/10.1016/j.ijleo.2021.168257

  76. Katubi KM, Recep Kurtulus ZA, Alrowaili TK, Kavaz E, Al-Buriahi MS (1011) Optical properties, elastic moduli, and radiation shielding performance of some waste glass systems treated by bismuth oxide. Optik 266:169567. https://doi.org/10.1016/j.ijleo.2022.169567

  77. Al-Buriahi MS, Alrowaili ZA, Eke C, Alzahrani JS, Olarinoye IO, Sriwunkum C Optical and radiation shielding studies on tellurite glass system containing ZnO and Na2O. Optik 168821(257). https://doi.org/10.1016/j.ijleo.2022.168821

  78. Edukondalu A, Stalin S, Reddy MS et al (2022) Synthesis, thermal, optical, mechanical and radiation-attenuation characteristics of borate glass system modified by Bi2O3/MgO. Appl Phys A 128:331. https://doi.org/10.1007/s00339-022-05475-3

    Article  CAS  Google Scholar 

  79. Alzahrani JS, Alrowaili ZA, Eke C, Mahmoud ZMM, Mutuwong C, Al-Buriahi MS (2022) Nuclear shielding properties of Ni-, Fe-, Pb-, and W-based alloys. Radiat Phys Chem 195:110090. https://doi.org/10.1016/j.radphyschem.2022.110090

  80. Al-Buriahi MS, Alrowaili ZA, Alomairy S, Olarinoye IO, Mutuwong C (2022) Optical properties and radiation shielding competence of Bi/Te-BGe glass system containing B2O3 and GeO2. Optik 257:168883. https://doi.org/10.1016/j.ijleo.2022.168883

  81. Katubi KM, Eke C, Alwadai N, Alrowaili ZA, Mutuwong C, Al-Buriahi MS (2022) Influence of Fe2O3 content on the optical features and radiation shielding efficiency of CaO-Na2O-B2O3 glass system. Optik 265:169473. https://doi.org/10.1016/j.ijleo.2022.169473

Download references

Acknowledgements

This work was supported by the King Khalid University through a grant RCAMS/KKU/013-23 under the Research Center for Advanced Materials (RCAMS) at King Khalid University, Saudi Arabia.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Kh.S. Shaaban wrote the main manuscript text, prepared figures, and reviewed the manuscript, J.Laifi, prepared figures, Talal M. Althagafi, wrote the main manuscript text, prepared tables and reviewed the manuscript, Essam H. Ibrahim, prepared tables, reviewed the manuscript, Hamed A Ghramh, prepared figures, review the manuscript, Takwa E. Ellakwa, wrote the main manuscript text, prepared figures, prepared tables, review the manuscript.

Corresponding author

Correspondence to Kh. S. Shaaban.

Ethics declarations

Ethics Approval and Consent to Participate

The manuscript has not been published.

Consent to Participate and Publication

The authors consent to participate and publish.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laifi, J., Althagafi, T.M., Ibrahim, E.H. et al. Characterization of Mechanical and Radiation Shielding Ability of CdO - SiO2 - B2O3 - MoO3 - LiF Glasses. Silicon 16, 593–601 (2024). https://doi.org/10.1007/s12633-023-02699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02699-7

Keywords

Navigation