Skip to main content

Advertisement

Log in

Electrochemical Synthesis and Characterization of Silicon thin Films for Energy Conversion

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Currently, research is being actively conducted aimed at developing materials and devices for obtaining and storing energy from renewable sources. In particular, attention is paid to the conversion of solar energy with a view to its subsequent storage in lithium-ion current sources or hydrogen storage devices. In this regard, the possibility of electrochemical synthesis of photoelectroactive thin silicon films on glassy carbon from the low-melting LiCl-KCl-CsCl-K2SiF6 electrolyte at a temperature of 540 °C was studied in this article. Experimental samples of thin silicon films were obtained from the studied electrolyte depending on the electrolysis parameters; their morphology and elemental composition have been studied by means of scanning electron microscopy and energy-dispersive X-ray analysis. The pulsed mode of electrodeposition of the densest film was chosen, including: an anode treatment of the surface of the working electrode at a current density of 14.3 mA/cm2 during 5 s, after which pulsed electrolysis was carried out at a cathode current density of 28.5 mA/cm2 for 30 min with periodic current interruptions. The photoelectric effect of obtained silicon film was studied. A relatively high photosensitivity of the sample was shown due to an increased specific surface area and its energy inhomogeneity. Then, the base properties of the obtained sample were determined by means of atomic emission spectroscopy, visual photoelectron microscopy with plasma treatment of the sample with argon, laser atomic emission spectrometry, and atomic force electron microscopy.

Highlights

• Electrochemical synthesis.

• Silicon thin films were deposited.

• Films were tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information are available by request.

References

  1. Islam M, Said H, Hamzaoui A, Mnif A (2022) Study of structural and optical properties of electrodeposited silicon films on graphite substrates. Nanomaterials 12:363. https://doi.org/10.3390/nano12030363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laptev M, Isakov A, Grishenkova O, Vorob’ev A, Khudorozhkova A, Akashev L, Zaikov Y (2020) Electrodeposition of thin silicon films from the KF-KCl-KI-K2SiF6 melt. J Electrochem Soc 167:042506. https://doi.org/10.1149/1945-7111/ab7aec

    Article  CAS  Google Scholar 

  3. Zou X, Ji L, Ge J, Sadoway DR, Yu ET, Bard AJ (2019) Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications. Nat Commun 10:5772. https://doi.org/10.1038/s41467-019-13065-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Ivan GD, Jef P (2023) Aluminum-induced crystallizationforthin-film polycrystallinesilicon solar cells: achievementsandperspective. Sol Energy Mater Solar Cells. https://doi.org/10.1016/j.solmat.2013.08.01

    Article  Google Scholar 

  5. Song YJ, Anderson WA (2000) Amorphous silicon/p-type crystalline silicon heterojunction solar cells with a microcrystalline silicon buffer layer. Sol Energy Mater Solar Cells 64:241–249

    Article  CAS  Google Scholar 

  6. Lu Zhao Q, Chen C, Li G, Shi (2007) Electrochemical fabrication of p-poly (3-methylthiophene)/n-silicon solar cells. Sol Energy Mater Solar Cells 91:1811–1815. https://doi.org/10.1016/j.solmat.2007.06.010

    Article  CAS  Google Scholar 

  7. Strehlke S, Bastide S, Levy-Clement C (1999) Optimization of porous silicon reflectance for silicon photovoltaic cells. Sol Energy Mater Solar Cells 58:399–409

    Article  CAS  Google Scholar 

  8. Lambertz A, Smirnov V, Merdzhanova T, Ding K, Haas S, Jost G, Schropp REI, Finger F, Raua U (2023) Microcrystalline silicon–oxygen alloys for applicationin silicon solar cells and modules. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2013.05.053

    Article  Google Scholar 

  9. Li P, Wanga K, Ren S, Jianga D, Shia S, Tana Y (2018) Microstructure and conversion efficiency of multicrystalline silicon ingot prepared by upgraded metallurgical grade silicon. Sol Energy Mater Sol Cells 186:50–56

    Article  CAS  Google Scholar 

  10. Klyuia NI, Litovchenko VG, Rozhin AG, Dikusha VN, Kittler M, Seifert W (2002) Silicon solar cells with antireflection diamond-like carbon and silicon carbide films. Sol Energy Mater Solar Cells 72:597–603

    Article  Google Scholar 

  11. Roca F, Sinno G, Di F, Procini P, Fameli G, Grillo P, Citarella A, Pascarella F (1997) Process development of amorphous silicon/crystalline. Sol Energy Mater Solar Cells 48:15–24

    Article  CAS  Google Scholar 

  12. Selj JH, Thøgersen A, Foss SE, Marstein ES (2010) Optimization of multilayer porous silicon antireflection coatings for silicon solar cells. J J Appl Phys 107:074904. https://doi.org/10.1063/1.3353843

    Article  CAS  Google Scholar 

  13. Suzdaltsev A (2022) Silicon electrodeposition for microelectronics and distributed energy: a mini-review. Electrochem 3:760–768. https://doi.org/10.3390/electrochem3040050

    Article  CAS  Google Scholar 

  14. Kosov A, Semerikova O, Vakarin S, Grishenkova O, Trofimov A, Leonova N, Leonova N, Zaikov Y (2021) Photovoltaic response of silicon wafers treated in the K2WO4-Na2WO4-WO3 melt. J Electrochem Soc 168:126503. https://doi.org/10.1149/1945-7111/ac3a28

    Article  CAS  Google Scholar 

  15. Bubenchikov A, Nurakhmet Y, Molodikh V, Rudenok A (2016) Solar power as sources of electrical energy. Int Res J 5:59–62. https://doi.org/10.18454/IRJ.2016.47.288

    Article  Google Scholar 

  16. Li M, Zhong D, Ma T, Kazemian GW (2020) Photovoltaic thermal module and solar thermal collector connected in series: energy and exergy analysis. Energy Conv Manag 206:112479. https://doi.org/10.1016/j.enconman.2020.112479

    Article  Google Scholar 

  17. Roger J, Schorn L, Heydarian M, Farag A, Feeney T, Baumann D, Hu H, Laufer F, Duan W, Ding K, Lambertz A, Fassl P, Worgull M (2022) Laminated monolithic perovskite/silicon tandem photovoltaics. Adv Energy Mater 12:2200961. https://doi.org/10.1002/aenm.202200961

    Article  CAS  Google Scholar 

  18. Akbulatov A, Frolova L, Dremova N, Zhidkov I, Martynenko V, Tsarev S, Luchkin S, Kurmaev E, Aldoshin S, Stevenson K, Troshin P (2020) Light or heat: what is killing lead halide perovskites under solar cell operation conditions? J Phys Chem Lett 11:333–339. https://doi.org/10.1021/acs.jpclett.9b03308

    Article  CAS  PubMed  Google Scholar 

  19. Kuchmizhak A, Il’yaschenko V, Sergeev A, Gerasimenko A, Gutakovskii A, Mitsai E, Amosov A, Shevlyagin A (2022) Mg2Si is the new black: introducing a black silicide with > 95% average absorption at 200–1800 nm wavelengths. Appl Surf Sci 602:154321. https://doi.org/10.1016/j.apsusc.2022.154321

    Article  CAS  Google Scholar 

  20. Sofia S, Wang H, Bruno A, Cruz-Campa J, Buonassisi T, Peters I (2020) Roadmap for cost-effective, commercially-viable perovskite silicon tandems for the current and future PV market. Sustain Energy Fuels 4:852–862. https://doi.org/10.1039/c9se00948e

    Article  CAS  Google Scholar 

  21. Liu K, Chen B, Yu Z, Wu Y, Huang Z, Jia X, Li C, Spronk D, Wang Z, Wang Z, Qu S, Holman Z, Huang J (2022) Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells. J Mat Chem A 10:1343–1349. https://doi.org/10.1039/D1TA09143C

    Article  Google Scholar 

  22. Dunfield S, Moore D, Klein T, Fabian D, Christians J, Dixon A, Dou B, Ardo S, Beard M, Shaheen S, Berry J, Van Hest M (2018) Curtailing perovskite processing limitations via lamination at the perovskite / perovskite interface. ACS Energy Lett 3:1192–1197. https://doi.org/10.1021/acsenergylett.8b00548

    Article  CAS  Google Scholar 

  23. Ishikawa R, Watanabe S, Yamazaki S, Oya T, Tsuboi N (2019) Perovskite / graphene solar cells without a hole-transport layer. ACS Appl Energy Mater 2:171–175. https://doi.org/10.1021/acsaem.8b01606

    Article  CAS  Google Scholar 

  24. Schmager R, Roger J, Schwenzer J, Schackmar F, Abzieher T, Byranvand M, Nejand B, Worgull M, Richards B, Paetzold U (2020) Laminated perovskite photovoltaics: enabling novel layer combinations and device architectures. Adv Funct Mater 30:1907481. https://doi.org/10.1002/adfm.201907481

    Article  CAS  Google Scholar 

  25. Werner J, Niesen B, Ballif C (2017) Perovskite/silicon tandem solar cells: marriage of convenience or true love story? –An overview. Adv Mat Interfaces 5:1700731. https://doi.org/10.1002/admi.201700731

    Article  Google Scholar 

  26. Gevel TA, Zhuk SI, Suzdaltsev AV, Zaikov YuP (2022) Study into the possibility of silicon electrodeposition from a low-fluoride KCl-K2SiF6 melt. Ionics 28:3537–3545. https://doi.org/10.1007/s11581-022-04573-9

    Article  CAS  Google Scholar 

  27. Zhuk S, Isakov I, Apisarov A, Grishenkova O (2017) Electrodeposition of continuous silicon coatings from the KF-KCl-K2SiF6 melts. J Electrochem Soc 164:H5135–H5138. https://doi.org/10.1149/2.0171708jes

    Article  CAS  Google Scholar 

  28. Xie H, Zhao H, Liao J, Yin H (2018) Electrochemically controllable coating of a functional silicon film on carbon materials. Electrochim Acta 269:610–616. https://doi.org/10.1016/j.electacta.2018.03.002

    Article  CAS  Google Scholar 

  29. Yasuda K, Nohira T (2022) Electrochemical production of silicon. High Temp Mater Process 41:247–78. https://doi.org/10.1515/htmp-2022-0033

    Article  CAS  Google Scholar 

  30. Gevel TA, Zhuk SI, Leonova NM, Leonova AM, Suzdaltsev AV, Zaikov YuP (2022) Electrodeposition of silicon from the KCl-CsCl-K2SiF6 melt. Rus Met (Metally) 2022:958–964. https://doi.org/10.1134/S0036029522080237

    Article  Google Scholar 

  31. Padamata SK, Saevarsdottir G (2023) Silicon electrowinning by molten salts electrolysis. Front Chem 11:1133990. https://doi.org/10.3389/fchem.2023.1133990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdurakhimova R, Laptev M, Leonova N, Leonova A, Schmygalev A, Suzdaltsev A (2022) Electroreduction of silicon from the NaI-KI-K2SiF6 melt for lithium-ion power sources. Chim Tech Acta 9:20229424. https://doi.org/10.15826/chimtech.2022.9.4.24

    Article  CAS  Google Scholar 

  33. Gevel T, Zhuk S, Leonova N, Leonova A, Trofimov A, Suzdaltsev A, Zaikov Yu (2021) Electrochemical synthesis of nano-sized silicon from KCl-K2SiF6 melts for powerful lithium-ion batteries. Appl Sci 11:10927. https://doi.org/10.3390/app112210927

    Article  CAS  Google Scholar 

  34. Ustinova Y, Pavlenko О, Gevel T, Zhuk S, Suzdaltsev A, Zaikov Y (2022) Electrodeposition of silicon from the low-melting LiCl-KCl-CsCl-K2SiF6 electrolytes. J Electrochem Soc 169:032506. https://doi.org/10.1149/1945-7111/ac5a1c

    Article  CAS  Google Scholar 

  35. Pavlenko OB, Ustinova YuA, Zhuk SI, Suzdaltsev AV, Zaikov YuP (2022) Silicon electrodeposition from low-melting LiCl-KCl-CsCl melts. Rus Met (Metally) 2022:818–824. https://doi.org/10.1134/S0036029522080109

    Article  Google Scholar 

  36. Parasotchenko YuA, Pavlenko OB, Suzdaltsev AV, Zaikov YuP (2023) Electrochemical nucleation of silicon in the low-temperature LiCl-KCl-CsCl-K2SiF6 melt. J Electrochem Soc 170:022505. https://doi.org/10.1149/1945-7111/acbabf

    Article  CAS  Google Scholar 

  37. Nikolaev A, Mullabaev A, Suzdaltsev A, Kovrov V (2021) Purification of alkali metal chlorides by zone recrystallization for use in operations of pyrochemical processing of spent hydrocarbon fuel. At Energ 131(4):199–205. https://doi.org/10.1007/s10512-022-00865-5

    Article  CAS  Google Scholar 

  38. Zaykov YP, Zhuk SI, Isakov AV, Grishenkova OV, Isaev VA (2015) Electrochemical nucleation and growth of silicon in the KF-KCl-K2SiF6 melt. J Solid State Electrochem 19:1341–1345. https://doi.org/10.1007/s10008-014-2729-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The equipment of Shared Access Centers «Modern nanotechnology» (Ural Federal University) and «Composition of compounds» (Institute of High-Temperature Electrochemistry UB RAS) was used in this study. The authors thank Natalia Leonova for determining the photoelectric effect of the silicon sample. This work was carried out in the frame of the State Assignment number 075-03-2023-006 dated 16.01.2023 (the theme number FEUZ-2020-0037).

Author information

Authors and Affiliations

Authors

Contributions

Olga B. Pavlenko was involved in obtaining precipitation, conducting analyzes and writing the original text. Andrey V. Suzdaltsev was engaged in setting the research problem and correcting the text of the article. Yulia A. Parasotchenko was engaged in determining the parameters of electrodeposition. Yury P. Zaikov was responsible for scientific management. All authors reviewed the manuscript.

Corresponding author

Correspondence to Olga B. Pavlenko.

Ethics declarations

Ethical Approval

Not Applicable.

Consent for Publication

All the authors of the manuscript mutually agree on submission and publication in the journal.

Consent to Participate

All Authors contributed to the work and revised the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, O.B., Suzdaltsev, A.V., Parasotchenko, Y.A. et al. Electrochemical Synthesis and Characterization of Silicon thin Films for Energy Conversion. Silicon 15, 7765–7770 (2023). https://doi.org/10.1007/s12633-023-02615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02615-z

Keywords

Navigation