Skip to main content
Log in

The Use of Soluble Silicon via Fertigation and Leaf Application in Panicum Maximum Modulates Production Without Decreasing Grass Quality

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon is a beneficial element for forage grasses. However, to recommend its use, it is important to understand better whether it is possible to reconcile the increase in biomass production and no decreases in its quality. Because this information is lacking, this research aims to evaluate the effects of Si concentrations applied via fertigation with and without complement of Si leaf application on the agronomic characteristics, biomass production, and chemical composition of the grass Panicum maximum BRS cv. Zuri. The experiment was carried out in a greenhouse. The experiment had a 4 × 2 factorial design, being four concentrations of Si (0, 1.5, 3, and 4.5 mmol L−1) in the form of potassium silicate applied via fertigation in the absence and in the presence of a complementary application of Si via leaf (1.0 g L−1). This research shows that the use of high-soluble silicon at a concentration of 3.0 mmol L−1 via fertigation is sufficient to obtain an optimal nutritional efficiency and grass growth, with no need for complementary application of Si via leaf application. It is possible and viable to use Si for grasses, as it enhances the production of biomass without impairing the nutritional value and quality of the grass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18. https://doi.org/10.1080/00380768.2004.10408447

    Article  CAS  Google Scholar 

  2. He CW, Wang LJ, Liu J, Liu X, Li XL, Ma J, Lin YJ, Xu FS (2013) Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells. New Phytol 200:700–709. https://doi.org/10.1111/nph.12401

    Article  PubMed  CAS  Google Scholar 

  3. de Oliveira Filho ASB, de Mello Prado R, Teixeira GCM, Rocha AMS, de Souza Junior JP, de Cássia Piccolo M, Rocha JR (2021) Silicon attenuates the effects of water deficit in sugarcane by modifying physiological aspects and C:N:P stoichiometry and its use efficiency. Agric Water Manag 255:107006. https://doi.org/10.1016/j.agwat.2021.107006

  4. Teixeira GCM, Prado RM, Rocha AMS, Piccolo MC (2020) Root and foliar applied silicon modifies C:N:P ratio and increases the nutritional efficiency of pre-sprouted sugarcane seedlings under water deficit. PLoS ONE 15:e0240847. https://doi.org/10.1371/journal.pone.0240847

  5. Rocha JR, de Mello Prado R, de Cássia Piccolo M (2022) New outcomes on how silicon enables the cultivation of Panicum maximum in soil with water restriction. Sci Rep 12:1897. https://doi.org/10.1038/s41598-022-05927-z

  6. Li QF, Ma CC (2002) Effect of available silicon in soil on cucumber seed germination and seedling growth 338 metabolism. Acta Hortic Sin 29:433–437. https://doi.org/10.2478/v10032-012-0008-z

    Article  CAS  Google Scholar 

  7. Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues FA, Nunes-Nesi A, Fernie AR, Da Matta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed- forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752–762. https://doi.org/10.1111/j.1469-8137.2012.04299.x

    Article  PubMed  CAS  Google Scholar 

  8. Buchelt AC, Teixeira GCM, Oliveira KS, Rocha AMS, Prado RM, Caione G (2020) Silicon contribution via nutrient solution in forage plants to mitigate nitrogen, potassium, calcium, magnesium, and sulfur deficiency. J Soil Sci Plant Nutr 20:1532–1548. https://doi.org/10.1007/s42729-020-00245-7

    Article  CAS  Google Scholar 

  9. Araújo WBS, Teixeira GCM, de Mello PR, Rocha MAS (2022) Silicon mitigates nutritional stress of nitrogen, phosphorus, and calcium deficiency in two forages plants. Sci Rep 12:6611. https://doi.org/10.1038/s41598-022-10615-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Buchelt AC, de Mello PR, Caione G, Carneiro MA, Litter FA (2021) Effects of silicon fertigation on dry matter production and crude protein contents of a pasture. J Soil Sci Plant Nutr 21:3402–3413. https://doi.org/10.1007/s42729-021-00615-9

    Article  CAS  Google Scholar 

  11. Dorairaj D, Ismail MR, Sinniah UR, Tan KB (2020) Silicon mediated improvement in agronomic traits, physiological parameters and fiber content in Oryza sativa. Acta Physiol Plant 42(3):1–11. https://doi.org/10.1017/S1751731117000866

    Article  CAS  Google Scholar 

  12. de Melo SP, Monteiro FA, De Bona FD (2010) Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha. Plant Soil 336:241–249. https://doi.org/10.1007/s11104-010-0472-5

    Article  CAS  Google Scholar 

  13. Korndörfer PH, Silva GC, Teixeira IR, Silva AG, Freitas RS (2010) Efeito da adubaçao silicatada sobre gramíneas forrageiras e características químicas do solo. Pesquisa Agropecuária Tropical, Goiânia 40(2):119–125. Available in: https://revistas.ufg.br/pat/article/view/3922. Accessed 23 Feb 2023

  14. Van Soest PJ, Jones LHP (1968) Effect of silica in forages upon digestibility. J Dairy Sci 51(10):1644–1648. https://doi.org/10.3168/jds.S0022-0302(68)87246-7

    Article  Google Scholar 

  15. Cougnon M, Shoelynck J, Van Den Eynde R, Maas L, Reheul D (2020) Prospects to select tall fescue with a low silica concentration. Euphytica 216(8):1–11. https://doi.org/10.1007/s10681-020-02663-1

    Article  CAS  Google Scholar 

  16. Głazowska S, Baldwin L, Mravec J, Buckh C, Hansen TH, Jensen MM, Fangel JU, Willats WGT, Glasius M, Felby C, Schjoerring JK (2018) The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon. Biotechnol Biofuels 11:171. https://doi.org/10.1186/s13068-018-1166-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Borawska-Jarmułowicz B, Mastalerczuk G, Janicka M, Wróbel B (2022) Effect of silicon-containing fertilizers on the nutritional value of grass-legume mixtures on temporary grasslands. Agriculture 12:145. https://doi.org/10.3390/agriculture12020145

    Article  CAS  Google Scholar 

  18. Mastalerczuk G, Borawska-Jarmułowicz B, Dąbrowski P, Szara E, Perzanowska A, Wróbel B (2020) Can the application the silicon improve the productivity and nutritional value of grass-clover sward in conditions of rainfall shortage in organic management? Agronomy 10:1007. https://doi.org/10.3390/agronomy10071007

    Article  CAS  Google Scholar 

  19. Santos HG, Jacomine dos PKT, Dos Anjos LHC, De Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araujo Filho JC, Oliveira JB, Cunha TJF (2018) In: Santos HG, Jacomine from PKT, Dos Anjos LHC, De Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araujo Filho JC, Oliveira JB, Cunha TJF (eds) Sistema brasileiro de classificação de solos [Brazilian system of soil classification]. Brasília, Federal District

  20. Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) In: Teixeira PC, Donagemma GK, Fontana A, Teixeira WG Manual de métodos de análise de solo [Manual of soil analysis methods], 3rd edn. Brasília, Federal District

  21. Kondörfer GH, Pereira HS, Nola A (2004) Análise de silício: solo, planta e fertilizante [Silicon analyse: soil, plant and fertilizers]. Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia

  22. Association of Official Analytical Chemists (AOAC) (2005) Official Methods of analysis of association of official analytical chemists international. In: Horwitz W, Latimer G (eds) Official Methods of Analysis of AOAC International, 18th edn. AOAC, Gaithersburg, MD

  23. Van Soest PJ (1994) Nutritional ecology of the ruminant. 2.ed. Cornell University Press, New York, 476 p

  24. Tilley JMA, Terry RA (1963) A two stagee technique for the in vitro digestion of forage crops. J British Grass Soc 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

    Article  CAS  Google Scholar 

  25. Siddiqi MY, Glass AD (1981) Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr 4:289–302. https://doi.org/10.1080/01904168109362919

    Article  Google Scholar 

  26. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35(1039–1042):325. https://doi.org/10.1590/S1413-70542011000600001

    Article  CAS  Google Scholar 

  27. Sangster AG, Hodson MJ, Tubb HJ (2001) Silicon deposition in higher plants. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. New York, NY, USA: Elsevier Science, pp 85-113

  28. Neu S, Schaller J, Dudel EG (2017) Silicon availability modifes nutrient use efciency and content, C:N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci Rep 7:3–10. https://doi.org/10.1038/srep40829

    Article  CAS  Google Scholar 

  29. Hodson MJ (2019) The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Front Earth Sci 7:167. https://doi.org/10.3389/feart.2019.00167

    Article  Google Scholar 

  30. Hartley SE, Fitt RN, McLarnon EL, Wade RN (2015) Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Front Plant Sci 6:35. https://doi.org/10.3389/fpls.2015.00035

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yamaji N, Ma JF (2007) Distribuição espacial e variação temporal do transportador de silício de arroz Lsi1. Plant Physiol 143:1306–1313. https://doi.org/10.1104/pp.106.093005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Euclides VPB, Carpejani GC, Montagner DB, Nascimento JD, Barbosa RA, Difante GS (2017) Maintaining post-grazing sward height of Panicum maximum (cv. Mombaça) at 50 cm led to higher animal performance compared with post-grazing height of 30 cm. Grass Forage Sci 10:1–9. https://doi.org/10.1111/gfs.12292

    Article  Google Scholar 

  33. Zanine AM, Nascimento JD, Silva WL, Sousa BML, Ferreira DJ, Silveira MCT, Parente HN, Santos MER (2018) Morphogenetic and structural characteristics of guinea grass pastures under rotational stocking strategies. Exp Agric 5:1–14. https://doi.org/10.1017/S0014479716000223

    Article  Google Scholar 

  34. Faria LDA, Luz PHDC, Rodrigues RC, Herling VR, Macedo FB (2008) Efeito residual da silicatagem no solo e na produtividade do capim-marandu sob pastejo. Rev Bras Ciênc Solo 32:1209–1216. https://doi.org/10.1590/S0100-06832008000300029

    Article  CAS  Google Scholar 

  35. Prado RM (2021) Mineral Nutrition of Tropical Plants (Springer International Publishing). https://doi.org/10.1007/978-3-030-71262-4

  36. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. https://doi.org/10.1146/annurev-arplant-042809-112315

    Article  PubMed  CAS  Google Scholar 

  37. He C, Ma J, Wang L (2015) A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytol 206:1051–1062. https://doi.org/10.1111/nph.13282

    Article  PubMed  CAS  Google Scholar 

  38. Jarrige R, Minson DJ (1964) Digestibilité des constituants du ray-grass anglais S24 et du dactyle S37, plus spécialement des constituants glucidiques. Ann Zootech 13:117–153

    Article  CAS  Google Scholar 

  39. Minson DJ (1971) Influences of lignin and silicon on a summative system for assessing the organic matter digestibility of Panicum. Aust J Agricultural Res 22:589–598

    Article  CAS  Google Scholar 

  40. Montes-Sánchez JJ, Villalba JJ (2017) Understanding medusahead low intake and palatability through in vitro digestibility and fermentation kinetics. Animal 11(11):1930–1938. https://doi.org/10.1017/S1751731117000866

  41. Rebole A, Treviño J, Barro C, Caballero R (1996) Chemical change associated with the field drying of oat forage. Field Crop Res 47:221–226. https://doi.org/10.1016/0378-4290(96)00012-3

    Article  Google Scholar 

  42. Halpin C (2019) Lignin engineering to improve saccharification and di-gestibility in grasses. Curr Opin Biotechnol 56(2):23–229. https://doi.org/10.1016/j.copbio.2019.02.013

    Article  CAS  Google Scholar 

  43. Li Z, Song Z, Yan Z, Hao Q, Son A, Liu L, Yang X, Xia S, Liang Y (2018) Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron Sustain Dev 38:1–19. https://doi.org/10.1007/s13593-018-0496-4

  44. Kim SG, Kim KW, Park EW, Choi D et al (2002) Silicon-induced cell wall fortifcation of rice leaves: A possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095–1103. https://doi.org/10.1094/PHYTO.2002.92.10.1095

  45. Mantovani C, Prado RM, Pivetta KFL (2018) Silicon foliar application on nutrition and growth of Phalaenopsis and Dendrobium orchids. Sci Hortic 241:83–92. https://doi.org/10.1016/j.scienta.2018.06.088

    Article  CAS  Google Scholar 

  46. Dorairaj D, Ismail MR, Sinniah UR, Tan KB (2017) Influence of silicon on growth, yield and resistance to lodging of MR219, a lowland rice from Malaysia. J Plant Nutri 40:1111–1124. https://doi.org/10.1080/01904167.2016.1264420

    Article  CAS  Google Scholar 

  47. Jung HG, Casler MD (1991) Relationship of lignin and esterified phenolics to fermetations of smooth bromegrass fibre. Anim Feed Sci Tecnol 32:63–68

    Article  CAS  Google Scholar 

  48. Deschamps FC, Brito CJFAD (2001) Forage quality and relative participation in dry matter of different fractions of elephantgrass cultivars (Pennisetum purpureum Schumach.). Rev Bras Zootec 30:1418–1423. https://doi.org/10.1590/S1516-35982001000600005

    Article  Google Scholar 

  49. Jung HG, Allen MS (1995) Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J Anim Sci 73:2774–2790

    Article  PubMed  CAS  Google Scholar 

  50. Fang JY, Ma XL (2006) In vitro simulation studies of silica deposition induced by lignin from rice. J Zhejiang Univ Sci B 7(4):267. https://doi.org/10.1631/jzus.2006.B0267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Nader GA, Cunb GS, Robinson PH (2012) Impacts of sílica levels, and location in the detergent fiber matrix, on in vitro gas production of rice straw. Anim Feed Sci Technol 174:140–147. https://doi.org/10.1016/j.anifeedsci.2012.03.009

    Article  CAS  Google Scholar 

  52. Carlisle EM (1988) Silicon as a trace nutrient. Sci Total Environ 73(1–2):95–106. https://doi.org/10.1016/0048-9697(88)90190-8

    Article  PubMed  CAS  Google Scholar 

  53. Su Y, Cappock M, Dobres S, Kucine AJ, Waltzer WC, Zhu D (2023) Supplemental mineral ions for bone regeneration and osteoporosis treatment. Eng Regen. https://doi.org/10.1016/j.engreg.2023.02.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Antonio Carlos Buchelt: Conducting the experiment, analysis, data tabulation and writing and final revision. Renato de Mello Prado: Orientation, writing and final revision. Gustavo Caione: Orientation, analysis and final revision. Anderson de Moura Zanine: Laboratory analysis, data interpretation and final revision. Sabrina Machado Dela Justina, Jhonatas da Silva Ribeiro and Antonio Martins de Souza Junior: Conducting the experiment. Daniele de Jesus Ferreira and Francisca Claudia da Silva de Sousa: Laboratory analysis and final revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Antonio Carlos Buchelt.

Ethics declarations

Author Declarations

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchelt, A.C., de Mello Prado, R., Caione, G. et al. The Use of Soluble Silicon via Fertigation and Leaf Application in Panicum Maximum Modulates Production Without Decreasing Grass Quality. Silicon 15, 7553–7563 (2023). https://doi.org/10.1007/s12633-023-02602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02602-4

Keywords

Navigation