Skip to main content
Log in

Developing Nano Silicon-Salicylic Acid Complex for Inducing Root-Knot Nematode Resistance in Tomato

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Root-knot nematodes (Meloidogyne spp.) are of hard-to-manage pests. Eliciting resistance is an interesting approach for crop protection against these parasites. We synthesized a nano-silicon compound based on salicylic acid (n-SiSA) to induce resistance against M. javanica in tomato. The efficiency of n-SiSA in developing resistance was compared to that in non-pretreated plants and plants pretreated with salicylic acid (SA) and sodium silicate (Si). Investigating the growth and health of the plants 30 days following the pretreatments indicated that nematode infection decreased the fresh mass of shoot (-33.2%) and root (-26.0%), and height (-25.6%) of the non-pretreated plants and induced chlorophyll decline (-19.7%) in leaves. The pretreatments reduced infection and reproductive growth of M. javanica and recovered the growth and health of the infected plants. The most successful pretreatment was n-SiSA which resulted in the lowest egg mass (-75.1%), egg number (-46.1%), and root-knot number (-64.3%) and diameter (-48.2%) in the roots compared to the non-pretreated plants. Evaluating the biochemical responses of the plants revealed that SA and n-SiSA pretreatments by inducing H2O2 accumulation (+ 400.9% and + 359.1%), and chitinase (+ 191.1% and + 237.0%) and protease (+ 45.9% and + 39.0%) activities in the roots, induced resistance in the plants. The lack of these responses in the Si-pretreated plants suggested that Si reduced nematode infection by enhancing the physical strength of the root cell wall. The physiological and biochemical responses of the plant to SA and Si pretreatments revealed that n-SiSA induced nematode resistance by activating H2O2-related defense responses and strengthening root cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915. https://doi.org/10.1038/nbt.1482

    Article  PubMed  CAS  Google Scholar 

  2. Oka Y, Nacar S, Putievsky E, Ravid U, Yaniv Z, Spiegel Y (2000) Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90(7):710–715. https://doi.org/10.1094/PHYTO.2000.90.7.710

    Article  PubMed  CAS  Google Scholar 

  3. Jackson AO, Taylor CB (1996) Plant-microbe interactions: life and death at the interface. Plant Cell 8(10):1651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Karimi S, Ehterami-Fini F (2021) Comparing different pretreatments at transplanting stage for acclimation of walnut trees to hot and dry conditions. Plant Stress 2:100036. https://doi.org/10.1016/j.stress.2021.100036

    Article  CAS  Google Scholar 

  5. Zhan LP, Peng DL, Wang XL, Kong LA, Peng H, Liu SM, Liu Y, Huang WK (2018) Priming effect of root-applied silicon on the enhancement of induced resistance to the root-knot nematode Meloidogyne graminicola in rice. BMC Plant Biol 18(1):1–12. https://doi.org/10.1186/s12870-018-1266-9

    Article  CAS  Google Scholar 

  6. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Nat Acad Sci 97(16):8849–8855. https://doi.org/10.1073/pnas.97.16.8849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zinovieva SV, Vasyukova NI, Udalova ZV, Gerasimova NG, Ozeretskovskaya OL (2011) Involvement of salicylic acid in induction of nematode resistance in plants. Biol Bull 38(5):453–458. https://doi.org/10.1134/S1062359011050177

    Article  CAS  Google Scholar 

  8. Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86(2):149–155

    Article  CAS  Google Scholar 

  9. Karimi S, Zare N (2023) Silicon Pretreatment at the transplanting stage, a tool to improve the drought tolerance and subsequent growth of melons in the field. Silicon 18:1–9. https://doi.org/10.1007/s12633-023-02410-w

    Article  CAS  Google Scholar 

  10. Cacique IS, Domiciano GP, Rodrigues FÁ, Vale FXRD (2012) Silicon and manganese on rice resistance to blast. Bragantia 71(2):239–244. https://doi.org/10.1590/S0006-87052012000200013

    Article  CAS  Google Scholar 

  11. Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S (2017) Role of silicon on plant pathogen interactions. Front Plant Sci 8:701. https://doi.org/10.3389/fpls.2017.00701

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karimi S, Torki Z, Nazok-kar Maher M, Yegane N (2022) Pre-transplant silicon priming improved drought tolerance and biomass partitioning in young tomato plants. Int J Veg Sci 28(4):349–365. https://doi.org/10.1080/19315260.2021.1974145

    Article  Google Scholar 

  13. Khan MR, Siddiqui ZA (2020) Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Sci Hortic 265:109211. https://doi.org/10.1016/j.scienta.2020.109211

    Article  CAS  Google Scholar 

  14. Yu J, Yu X, Li C, Ayaz M, Abdulsalam S, Peng D, Qi R, Peng H, Kong L, Jia J, Huang W (2022) Silicon mediated plant immunity against nematodes: Summarizing the underline defence mechanisms in plant nematodes interaction. Int J Mol Sci 23(22):14026. https://doi.org/10.3390/ijms232214026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chérif M, Asselin A, Bélanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84(3):236–242

    Article  Google Scholar 

  16. Liang YC, Sun WC, Si J, Römheld V (2005) Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54(5):678–685. https://doi.org/10.1111/j.1365-3059.2005.01246.x

    Article  CAS  Google Scholar 

  17. Dutra MR, Garcia ALA, Paiva BRTL, Rocha FS, Campos VP (2004) Efeito do Silício aplicado na semeadura do feijoeiro no controle de nematoide de galha. Fitopa Brasil 29:172

    Google Scholar 

  18. Silva RV, Oliveira RDL, Nascimento KJT, Rodrigues FA (2010) Biochemical responses of coffee resistance against Meloidogyne exigua mediated by silicon. Plant Pathol 59(3):586–593. https://doi.org/10.1111/j.1365-3059.2009.02228.x

    Article  CAS  Google Scholar 

  19. Guimarães LMP (2010) Eficiência e atividade enzimática elicitada por metil jasmonato e silicato de potássio em cana-de-açúcar parasitada por Meloidogyne incognita. Summa Phytopathol 36:11–15. https://doi.org/10.1590/S0100-54052010000100001

    Article  Google Scholar 

  20. Mattei D, Dias-Arieira CR, Mendes Lopes AP, Miamoto A (2017) Influence of rocksil®, silifort® and wollastonite on penetration and development of Meloidogyne javanica in Poaceae and Fabaceae. J Phytopathol 165(2):91–97. https://doi.org/10.1111/jph.12540

    Article  CAS  Google Scholar 

  21. Samuels AL, Glass ADM, Ehret DL, Menzies JG (1991) Mobility and deposition of silicon in cucumber plants. Plant Cell Environ 14(5):485–492. https://doi.org/10.1111/j.1365-3040.1991.tb01518.x

    Article  Google Scholar 

  22. Soares MR, Dias-Arieira CR, Lopes AP (2021) Seed treatments for control of Meloidogyne graminicola in flooded rice. Eur J Plant Path 160:901–915. https://doi.org/10.1007/s10658-021-02294-9

    Article  CAS  Google Scholar 

  23. Nolla A, Korndörfer GH, Coelho L (2006) Efficiency of calcium silicate and carbonate in soybean disease control. J Plant Nutr 29(11):2049–61. https://doi.org/10.1080/01904160600932658

    Article  CAS  Google Scholar 

  24. Gatarayiha MC, Laing MD, Miller RM (2010) Combining applications of potassium silicate and Beauveria bassiana to four crops to control two spotted spider mite, Tetranychus urticae Koch. Int J Pest Manag 56(4):291–297. https://doi.org/10.1080/09670874.2010.495794

    Article  CAS  Google Scholar 

  25. Chi YK, Zhao W, Ye MD, Ali F, Wang T, Qi RD (2020) Evaluation of recombinase polymerase amplification assay for detecting Meloidogyne javanica. Plant Dis 104(3):801–7. https://doi.org/10.1094/PDIS-07-19-1473-RE

    Article  PubMed  CAS  Google Scholar 

  26. Shilpa SP, Thakur V, Sharma A, Rana RS, Kumar P (2022) A status-quo review on management of root-knot nematode in tomato. J Hortic Sci Biotech 97(4):403–416. https://doi.org/10.1080/14620316.2022.2034531

    Article  CAS  Google Scholar 

  27. Hussey RS (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028

    Google Scholar 

  28. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  29. Drapeau G (1974) Protease from Staphylococcus aureus. In: Lorand L (ed) Method of enzymology, vol 45b. Academic, New York, p 469

    Google Scholar 

  30. Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98(4):1222–1227. https://doi.org/10.1104/pp.98.4.1222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Boller T, Metraux JP (1988) Colorimetric assay for chitinase. Meth Enzymol 161(430):435

    Google Scholar 

  32. Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2019) Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 436:325–345. https://doi.org/10.1007/s11104-019-03932-2

    Article  CAS  Google Scholar 

  33. Gamalero E, Glick BR (2020) The use of plant growth-promoting bacteria to prevent nematode damage to plants. Biology 9(11):381. https://doi.org/10.3390/biology9110381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tabarant P, Villenave C, Risède JM, Roger-Estrade J, Dorel M (2011) Effects of organic amendments on plant-parasitic nematode populations, root damage, and banana plant growth. Biol Fert Soil 47:341–347. https://doi.org/10.1007/s00374-011-0541-9

    Article  Google Scholar 

  35. Abbasi MW, Ahmed N, Zaki MJ, Shuakat SS, Khan D (2014) Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant Soil 375:159–173. https://doi.org/10.1007/s11104-013-1931-6

    Article  CAS  Google Scholar 

  36. Ahmad L, Siddiqui ZA, Abd_Allah EF (2019) Effects of interaction of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani on the growth, chlorophyll, carotenoid and proline contents of carrot in three types of soil. Acta Agric Scan, Soil Plant Sci 69(4):324–31. https://doi.org/10.1080/09064710.2019.1568541

  37. Gheysen G, Mitchum MG (2019) Phytoparasitic nematode control of plant hormone pathways. Plant Physiol 179(4):1212–1226. https://doi.org/10.1104/pp.18.01067

    Article  PubMed  CAS  Google Scholar 

  38. Asyiah IN, Prihatin J, Hastuti AD, Winarso S, Widjayanthi L, Nugroho D, Firmansyah K, Pradana AP (2021) Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants. Biodiv J Biol Div 22(6):3256–3263. https://doi.org/10.13057/biodiv/d220630

    Article  Google Scholar 

  39. Khajuria A, Ohri P (2017) Nematode stress mitigation by polyamine application in Lycopersicon esculentum. Ind J Nem 47(2):147–154. https://doi.org/10.1007/s11104-019-03932-2

    Article  CAS  Google Scholar 

  40. Mukherjee A, Babu SPS, Mandal FB (2012) Potential of salicylic acid activity derived from stress-induced (water) tomato against Meloidogyne incognita. Archiv Phytopath Plant Protect 45:1909–1916. https://doi.org/10.1080/03235408.2012.718220

    Article  CAS  Google Scholar 

  41. Pluskota A, Horzowski E, Bossinger O, von Mikecz A (2009) In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4(8):e6622. https://doi.org/10.1371/journal.pone.0006622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Al Banna L, Salem N, Ghrair AM, Habash SS (2018) Impact of silicon carbide nanoparticles on hatching and survival of soil nematodes Caenorhabditis elegans and Meloidogyne incognita. App Ecol Environ Res 16(3):2651–2662. https://doi.org/10.1007/s12668-017-0419-x

    Article  Google Scholar 

  43. Tereshchenko N, Zmeeva O, Makarov B, Kravets A, Svetlichny V, Lapin I, Zotikova A, Petrova L, Yunusova T (2017) The influence of silicon oxide nanoparticles on morphometric parameters of monocotyledons and dicotyledons in soil and climatic conditions of western Siberia, as well as on microbiological soil properties. BioNanoScience 7:703–711. https://doi.org/10.1007/s12668-017-0419-x

    Article  Google Scholar 

  44. Bradbury M, Ahmad R (1990) The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant Soil 125:71–74. https://doi.org/10.1007/BF00010745

    Article  CAS  Google Scholar 

  45. Sahebani N, Hadavi N (2009) Induction of H2O2 and related enzymes in tomato roots infected with root-knot nematode (M. javanica) by several chemical and microbial elicitors. Biocontrol Sci Technol 19(3):301–313. https://doi.org/10.1080/09583150902752012

    Article  Google Scholar 

  46. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6. https://doi.org/10.1016/j.femsle.2005.06.034

    Article  PubMed  CAS  Google Scholar 

  47. Diogo RVC, Wydra K (2007) Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol Mol Plant Pathol 70(4–6):120–129. https://doi.org/10.1016/j.pmpp.2007.07.008

    Article  CAS  Google Scholar 

  48. Sarafraz Nikoo F, Sahebani N, Aminian H, Mokhtarnejad L, Ghaderi R (2014) Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. J Plant Prot Res 54(4):383–389. https://doi.org/10.2478/jppr-2014-0057

    Article  CAS  Google Scholar 

  49. Mostafanezhad H, Sahebani N, Nourinejhad Zarghani Sh (2014) Induction of resistance in tomato against root-knot nematode Meloidogyne javanica with salicylic acid. J Crop Prot 3(4):499–508

    Google Scholar 

  50. Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570. https://doi.org/10.3389/fpls.2016.00570

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N (2017) Salicylic acid to decrease plant stress. Environ Chem Let 15:101–123. https://doi.org/10.1007/s10311-016-0584-0

    Article  CAS  Google Scholar 

  52. Wu G, Shortt BJ, Lawrence EB, Leon J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115:427–435. https://doi.org/10.1104/pp.115.2.427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Vaghela B, Vashi R, Rajput K, Joshi R (2022) Plant chitinases and their role in plant defense–a comprehensive review. Enz Microb Technol 30:110055. https://doi.org/10.1016/j.enzmictec.2022.110055

    Article  CAS  Google Scholar 

  54. Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352. https://doi.org/10.1016/j.biocontrol.2004.07.011

    Article  CAS  Google Scholar 

  55. Dann EK, Meuwly P, Metraux JP, Deverall BJ (1996) The effect of pathogen inoculation or chemical treatment on activities of chitinase and β-1,3-glucanase and accumulation of salicylic acid in leaves of green bean, Phaseolus vulgaris L. Physiol Mol Plant Pathol 49:307–319. https://doi.org/10.1006/pmpp.1996.0056

    Article  CAS  Google Scholar 

  56. Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197. https://doi.org/10.1126/science.254.5035.1194

    Article  PubMed  CAS  Google Scholar 

  57. Benhamou N, Broglie K, Chet I, Broglie R (1993) Cytology of infection of 35S-bean chitinase transgenic canola plants by Rhizoctonia solani, cytochemical aspects of chitin breakdown in Šin vivo. Plant J 4:295–305. https://doi.org/10.1046/j.1365-313X.1993.04020295.x

    Article  CAS  Google Scholar 

  58. Kaur P, Choudhary R, Pal A, Mony C, Adholeya A (2020) Polymer-metal nanocomplexes based delivery system: a boon for agriculture revolution. Curr Top Med Chem 20(11):1009–1028. https://doi.org/10.2174/1568026620666200330160810

    Article  CAS  Google Scholar 

  59. Ahmed B, Rizvi A, Ali K, Lee J, Zaidi A, Khan MS, Musarrat J (2021) Nanoparticles in the soil–plant system: a review. Environ Chem Lett 19:1545–1609. https://doi.org/10.1007/s10311-020-01138-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SK participated in the study conception, data collection, and design. Material preparation and analysis were performed by SK. The manuscript was written by SK and VT, and the authors read and approved the final manuscript.

Corresponding author

Correspondence to Soheil Karimi.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

All authors are agreed to be listed as authors in current version of manuscript.

Consent to Publish

All authors are agreed for publication of tis manuscript in Silicon.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavallali, V., Karimi, S. Developing Nano Silicon-Salicylic Acid Complex for Inducing Root-Knot Nematode Resistance in Tomato. Silicon 15, 7335–7343 (2023). https://doi.org/10.1007/s12633-023-02589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02589-y

Keywords

Navigation