Skip to main content
Log in

Microstructure-Mechanical Property Correlation in Cooling Slope Cast Al-Si/Mg2Si-xwt.% TiB2 (x = 0, 1, 3 and 5) insitu Hybrid Composites

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the current work, microstructure-mechanical property correlation in Al-Si/ Mg2Si-xwt.% TiB2 (x = 0, 1, 3 and 5) insitu hybrid composites fabricated by cooling slope casting has been investigated. The microstructure and mechanical properties of these developed materials have been studied via different characterization techniques. Results indicate that the cooling slope casting and insitu generated TiB2 particles significantly reduce the grain size of α-Al (about 51%) and morphology of Mg2Si phases (46%). The cooling slope casting method promotes the dendrite fragmentation due to shearing action, emerging in developing non-dendritic and globular structures. The TiB2 particles acts as a nucleation site of Mg2Si phase and also help refine the Mg2Si phase. The tensile strength, percentage elongation and hardness of the Al-Si/Mg2Si-TiB2 hybrid composites are increased with an increased wt.% of TiB2 particles and maximum improvement 28% in tensile strength, 55% in percentage elongation and 30% hardness is observed in the case of Al-Si/Mg2Si-5wt.% TiB2 hybrid composite than of Al-Si/Mg2Si composite. The tensile fracture surface of hybrid composite is also correlated with the tensile properties and it has quasi-cleavage fracture. These composites could be promising materials to make the components for automotive and aerospace sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

NA.

References

  1. Hunt WH, Miracle DB (2018) Automotive Applications of Metal-Matrix Composites. Composites 21:1029–1032. https://doi.org/10.31399/asm.hb.v21.a0003484

    Article  Google Scholar 

  2. Surappa MK (2003) Aluminium Matrix Composites: Challenges and Opportunities // Sadhana. Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India. Sadhana 28:319–334

    Article  CAS  Google Scholar 

  3. Hayashi T (2000) Application of MMCS to engine cylinder blocks and brake disks. Compr Compos Mater 375–379. https://doi.org/10.1016/b0-08-042993-9/00209-6

  4. Macke A, Schultz Pradeep Rohatgi B (2012) Metal matrix composites. Adv Mater Process pp. 19–23. https://doi.org/10.31399/asm.amp.2012-03.p019

  5. Singh J, Chauhan A (2016) Characterization of hybrid aluminum matrix composites for advanced applications - A review. J Mater Res Technol 5:159–169. https://doi.org/10.1016/j.jmrt.2015.05.004

    Article  CAS  Google Scholar 

  6. Rajmohan T, Palanikumar K, Ranganathan S (2013) Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans Nonferrous Met Soc China (English Ed) 23:2509–2517. https://doi.org/10.1016/S1003-6326(13)62762-4

    Article  CAS  Google Scholar 

  7. Yadav AK, Kumar V, Mohan S (2022) Microstructure and mechanical properties of an in situ Al 356-Mg2Si-TiB2 hybrid composite prepared by stir and cooling slope casting. Int J Met 11–16. https://doi.org/10.1007/s40962-022-00804-x

  8. Dry sliding behavior of ZA based metal matrix composites. Int J Met. https://doi.org/10.1007/s40962-022-00806-9

  9. Shehata MM, El-Hadad S, Moussa ME, El-Shennawy M (2021) Optimizing the Pouring Temperature for Semisolid Casting of a Hypereutectic Al–Si Alloy Using the Cooling Slope Plate Method. Int J Met 15:488–499. https://doi.org/10.1007/s40962-020-00465-8

    Article  CAS  Google Scholar 

  10. Qin QD, Zhao YG, Cong PJ et al (2007) Semisolid microstructure of Mg2Si/Al composite by cooling slope cast and its evolution during partial remelting process. Mater Sci Eng A 444:99–103. https://doi.org/10.1016/j.msea.2006.08.074

    Article  CAS  Google Scholar 

  11. Kumar S, Das P, Tiwari SK et al (2015) Study of microstructure evolution during semi-solid processing of an in-situ Al alloy composite. Mater Manuf Process 30:356–366. https://doi.org/10.1080/10426914.2014.952040

    Article  CAS  Google Scholar 

  12. Wu XF, Zhang GG, Wu FF (2013) Microstructure and dry sliding wear behavior of cast Al-Mg2Si in-situ metal matrix composite modified by Nd. Rare Met 32:284–289. https://doi.org/10.1007/s12598-013-0030-4

    Article  CAS  Google Scholar 

  13. Tang P, Yu F, Teng X et al (2021) Effect of beryllium addition and heat treatment on the microstructure and mechanical properties of the 15%Mg2Si/Al-8Si composite. Mater Charact 180:111416. https://doi.org/10.1016/j.matchar.2021.111416

    Article  CAS  Google Scholar 

  14. Yu H, Wang H-Y, Chen L et al (2017) Spheroidization of primary Mg2Si in Al-20Mg2Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process. Mater Sci Eng A 685:31–38. https://doi.org/10.1016/j.msea.2016.12.080

    Article  CAS  Google Scholar 

  15. Georgatis E, Lekatou A, Karantzalis AE et al (2013) Development of a cast Al-Mg2Si-Si in situ composite: Microstructure, heat treatment, and mechanical properties. J Mater Eng Perform 22:729–741. https://doi.org/10.1007/s11665-012-0337-6

    Article  CAS  Google Scholar 

  16. Jiang W, Xu X, Zhao Y et al (2018) Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al-Mg2Si in-situ composite. Mater Sci Eng A 721:263–273. https://doi.org/10.1016/j.msea.2018.02.100

    Article  CAS  Google Scholar 

  17. Wu XF, Wang KY, Wu FF et al (2019) Simultaneous grain refinement and eutectic Mg2Si modification in hypoeutectic Al-11Mg2Si alloys by Sc addition. J Alloys Compd 791:402–410. https://doi.org/10.1016/j.jallcom.2019.03.326

    Article  CAS  Google Scholar 

  18. Li C, Wu Y, Li H et al (2010) Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys. Mater Sci Eng A 528:573–577. https://doi.org/10.1016/j.msea.2010.09.056

    Article  CAS  Google Scholar 

  19. Nordin NA, Farahany S, Ourdjini A et al (2013) Refinement of Mg2Si reinforcement in a commercial Al-20%Mg2Si in-situ composite with bismuth, antimony and strontium. Mater Charact 86:97–107. https://doi.org/10.1016/j.matchar.2013.10.007

    Article  CAS  Google Scholar 

  20. Ram SC, Chattopadhyay K, Chakrabarty I (2019) Microstructures and high temperature mechanical properties of A356-Mg2Si functionally graded composites in as-cast and artificially aged (T6) conditions. J Alloys Compd 805:454–470. https://doi.org/10.1016/j.jallcom.2019.07.075

    Article  CAS  Google Scholar 

  21. Ghorbani MR, Emamy M, Khorshidi R et al (2012) Effect of Mn addition on the microstructure and tensile properties of Al-15%Mg2Si composite. Mater Sci Eng A 550:191–198. https://doi.org/10.1016/j.msea.2012.04.056

    Article  CAS  Google Scholar 

  22. Yadav AK, Gautam G, Mohan S (2022) Effect of Insitu Formed TiB2 Particles on Tribological Behaviour of Al-Si/Mg2Si Hybrid Composites. Silicon. https://doi.org/10.1007/s12633-022-02065-z

    Article  Google Scholar 

  23. Birol Y (2008) Cooling slope casting and thixoforming of hypereutectic A390 alloy. J Mater Process Technol 207:200–203. https://doi.org/10.1016/j.jmatprotec.2007.12.071

    Article  CAS  Google Scholar 

  24. Gao Q, Wu S, Lü S et al (2015) Preparation of in-situ TiB2 and Mg2Si hybrid particulates reinforced Al-matrix composites. J Alloys Compd 651:521–527. https://doi.org/10.1016/j.jallcom.2015.08.162

    Article  CAS  Google Scholar 

  25. Du R, Yuan D, Li F et al (2019) Effect of in-situ TiB2 particles on microstructure and mechanical properties of Mg2Si/Al composites. J Alloys Compd 776:536–542. https://doi.org/10.1016/j.jallcom.2018.10.301

    Article  CAS  Google Scholar 

  26. Li J, Li F, Wu S et al (2019) Variation of microstructure and mechanical properties of hybrid particulates reinforced Al-alloy matrix composites with ultrasonic treatment. J Alloys Compd 789:630–638. https://doi.org/10.1016/j.jallcom.2019.03.074

    Article  CAS  Google Scholar 

  27. Gautam G, Mohan A (2015) Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2+Al3Zr)/AA5052 insitu composites. J Alloys Compd 649:174–183. https://doi.org/10.1016/j.jallcom.2015.07.096

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author wishes to acknowledge the Indian Institute of Technology (Banaras Hindu University), Varanasi for providing the financial support as Teaching Assistantship (TA) to Mr. Amit Kumar Yadav for the research work.

Author information

Authors and Affiliations

Authors

Contributions

Writing-original draft preparation: Amit Kumar Yadav. Writing-review and editing: Gaurav Gautam. Critical revision of the article, Supervised the work: Sunil Mohan.

Corresponding author

Correspondence to Sunil Mohan.

Ethics declarations

Ethics Approval

NA.

Consent for Publication

NA.

Consent for Participate

NA.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K., Gautam, G. & Mohan, S. Microstructure-Mechanical Property Correlation in Cooling Slope Cast Al-Si/Mg2Si-xwt.% TiB2 (x = 0, 1, 3 and 5) insitu Hybrid Composites. Silicon 15, 7431–7440 (2023). https://doi.org/10.1007/s12633-023-02587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02587-0

Keywords

Navigation