Skip to main content
Log in

Bio-nano-remediation of Olive Oil Mill Wastewater using Silicon Dioxide Nanoparticles for Its Potential Use as Biofertilizer for Young Olive Plants

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2023

This article has been updated

Abstract

The rising demand for olive oil worldwide led to an increase of oil production, causing an undesired side-effect such as the huge quantity of olive mill wastewater (OMWW) and leaf waste, which represent a serious problem in agriculture. The present work aims to recycle these wastes and use them as fertilizer in nurseries for young olive trees. Hence, three treatments of OMWW were used: i) Photocatalytic treatment (PT) by silicon dioxide nanoparticles; ii) Biological treatment (BT) by olive leaves and iii) a combination of both biological and photocatalytic treatments (CT). The obtained results showed that BT and PT, when used separately, reduced the phenolic content (PC) and chemical oxygen demand (COD), compared to raw OMWW. Interestingly, by combining both treatments, the removal rate of PC and COD reached 78% and 66%, respectively. Following the amendment of young olive trees by treated OMWW, plants growth and morphology, photosynthetic machinery and antioxidant capacity were improved compared to those amended with raw OMWW, with the best values observed under CT. In conclusion, CT allowed the bioremediation of two olive by-products that are useful as biofertilizer for olive young plants in a short period of time and at low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  1. Rui Morgado (2022) From traditional to super-intensive: drivers and biodiversity impacts of olive farming intensification. University of Lisboa

  2. Rhizopoulou S (2007) Olea europaea L. A Botanical Contribution to Culture. J Agric Environ Sci 2:382–387

    Google Scholar 

  3. Weber M, Salhab J, Tsatsimpe K, Sanchez-Quintela S (2019) “Olive Oil in the North-West of Tunisia: Findings from a Value Chain and Jobs Survey,” Jobs Group Papers, Notes, and Guides 32169322. The World Bank

  4. Dutournié P, Jeguirim M, Khiari B et al (2019) Olive Mill Wastewater : From a Pollutant to Green Part 2 : Water Recovery. water Article 11:1–13

  5. Avraamides M, Fatta D (2008) Resource consumption and emissions from olive oil production: a life cycle inventory case study in Cyprus. J Clean Prod 16:809–821. https://doi.org/10.1016/J.JCLEPRO.2007.04.002

    Article  Google Scholar 

  6. Molina Alcaide E, Nefzaoui A (1996) Recycling of olive oil by-products: Possibilities of utilization in animal nutrition. Int Biodeterior Biodegradation 38:227–235. https://doi.org/10.1016/S0964-8305(96)00055-8

    Article  Google Scholar 

  7. Ahmed PM, Fernández PM, de Figueroa LIC, Pajot HF (2019) Exploitation alternatives of olive mill wastewater: Production of value-added compounds useful for industry and agriculture. Biofuel Res J 6:980–994. https://doi.org/10.18331/BRJ2019.6.2.4

  8. Rusan MJM, Albalasmeh AA, Malkawi HI (2016) Treated olive mill wastewater effects on soil properties and plant growth. Water Air Soil Pollut 227:135. https://doi.org/10.1007/s11270-016-2837-8

  9. Pierantozzi P, Torres M, Verdenelli R et al (2013) Short-term impact of olive mill wastewater (OMWW) applications on the physico-chemical and microbiological soil properties of an olive grove in Argentina. J Environ Sci Health B 48:393–401. https://doi.org/10.1080/03601234.2013.742398

    Article  PubMed  CAS  Google Scholar 

  10. Mohawesh O, Al-Hamaiedeh H, Albalasmeh A et al (2019) Effect of Olive Mill Wastewater (OMW) application on soil properties and wheat growth performance under rain-fed conditions. Water Air Soil Pollut 230:160. https://doi.org/10.1007/s11270-019-4208-8

    Article  CAS  Google Scholar 

  11. Regni L, Pezzolla D, Ciancaleoni S et al (2021) Long-term effects of amendment with Olive Mill Wastewater on soil chemical properties, microbial community, and olive tree vegetative and productive activities. Agronomy 11:2562. https://doi.org/10.3390/agronomy11122562

    Article  CAS  Google Scholar 

  12. Regni L, Gigliotti G, Nasini L et al (2017) In: Galanakis CM (ed) Reuse of olive mill waste as soil amendment. Olive Mill Waste: Recent advances for the sustainable management, 1st edn, chap 5. Elsevier-Academic Press, pp 97–117. https://doi.org/10.1016/B978-0-12-805314-0.00005-4

  13. Peri C, Proietti P (2014) Olive mill waste and by-products. In: Peri C (ed) The Extra-Virgin Olive Oil Handbook. John Wiley & Sons, Ltd, Chichester, UK, pp 283–302

  14. Magdich S, Abid W, Boukhris M et al (2016) Effects of long-term olive mill wastewater spreading on the physiological and biochemical responses of adult Chemlali olive trees (Olea europaea L.). Ecol Eng 97:122–129. https://doi.org/10.1016/j.ecoleng.2016.09.004

    Article  Google Scholar 

  15. Ouzounidou G, Georgios ZI, Gaitis F (2010) Raw and microbiologically detoxified olive mill waste and their impact on plant growth. Terr Aquat Environ Toxicol 4:21–38

    Google Scholar 

  16. El-Hassani FZ, Amraoui MB, Zinedine A et al (2009) Changes in leaf phenols and other physiological parameters of peppermint in response to olive mill wastewater application. Int J Agric Biol 11:413–418

    CAS  Google Scholar 

  17. Nogueira V, Lopes I, Freitas AC et al (2015) Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials. Ecotoxicol Environ Saf 115:234–242. https://doi.org/10.1016/j.ecoenv.2015.02.028

    Article  PubMed  CAS  Google Scholar 

  18. Mekki A, Aloui A, Guergueb Z, Braham M (2018) Agronomic valorization of olive mill wastewaters: effects on medicago sativa growth and soil characteristics. Clean-Soil Air Water 46(9). https://www.researchgate.net/journal/CLEAN-Soil-Air-Water-1863-0669

  19. Jeguirim M, Dutournié P, Zorpas AA, Limousy L (2017) Olive Mill wastewater: from a pollutant to green fuels, agriculturalwater source and bio-fertilizer-part 1 The drying kinetics. Energies 10:1–16. https://doi.org/10.3390/en10091423

    Article  CAS  Google Scholar 

  20. Tüzel Y, Ekinci K, Öztekin GB et al (2020) Utilization of olive oil processing waste composts in organic tomato seedling production. Agronomy 10(6):797. https://doi.org/10.3390/agronomy10060797

  21. Gotsi M, Kalogerakis N, Psillakis E et al (2005) Electrochemical oxidation of olive oil mill wastewaters. Water Res 39:4177–4187. https://doi.org/10.1016/J.WATRES.2005.07.037

    Article  PubMed  CAS  Google Scholar 

  22. Bawab AA, Ghannam N, Abu-Mallouh S et al (2018) Olive mill wastewater treatment in Jordan: A Review. IOP Conf Ser Mater Sci Eng 305:012002. https://doi.org/10.1088/1757-899X/305/1/012002

  23. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: Applications and emerging opportunities. Crit Rev Microbiol 34:43–69. https://doi.org/10.1080/10408410701710442

    Article  PubMed  CAS  Google Scholar 

  24. Wu H, Li Z (2022) Nano-enabled agriculture: how nanoparticles cross barriers in plants? Plant Commun 3(6):100346. https://doi.org/10.1016/j.xplc.2022.100346

  25. Pourjamshid SA (2021) Study the effect of iron, zinc and manganese foliar application on morphological and agronomic traits of bread wheat (Chamran cultivar) under different irrigation regimes. Environ Stress Crop Sci 14:109–118

    Google Scholar 

  26. Bairwa P, Kumar N, Devra V (2023) Nano-biofertilizers synthesis and applications in agroecosystems. Agrochemicals 2(1):118–134. https://doi.org/10.3390/agrochemicals2010009

  27. Akhtar N, Ilyas N, Meraj TA et al (2022) Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials 12(6):965. https://doi.org/10.3390/nano12060965 

  28. Shcherbakova EN, Shcherbakov AV, Andronov EE et al (2017) Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis 73:57–69. https://doi.org/10.1007/s13199-016-0472-1

    Article  CAS  Google Scholar 

  29. Romero-García JM, Niño L, Martínez-Patiño C et al (2014) Biorefinery based on olive biomass. State of the art and future trends. Biores Technol 159:421–432. https://doi.org/10.1016/j.biortech.2014.03.062

    Article  CAS  Google Scholar 

  30. Molina-Alcaide E, Yáñez-Ruiz DR (2008) Potential use of olive by-products in ruminant feeding: a review. Anim Feed Sci Technol 147:247–264. https://doi.org/10.1016/j.anifeedsci.2007.09.021

    Article  CAS  Google Scholar 

  31. Mattioli S, Machado Duarte JM, Castellini C et al (2018) Use of olive leaves (whether or not fortified with sodium selenate) in rabbit feeding: Effect on performance, carcass and meat characteristics, and estimated indexes of fatty acid metabolism. Meat Sci 143:230–236. https://doi.org/10.1016/j.meatsci.2018.05.010

    Article  PubMed  CAS  Google Scholar 

  32. Mattioli S, Dal Bosco A, Duarte JMM et al (2019) Use of Selenium-enriched olive leaves in the feed of growing rabbits: effect on oxidative status, mineral profile and Selenium speciation of Longissimus dorsi meat. J Trace Elem Med Biol 51:98–105. https://doi.org/10.1016/j.jtemb.2018.10.004

    Article  PubMed  CAS  Google Scholar 

  33. Arminda M, Fabiana SM, Marianela G, Cristina D (2018) Graphical abstract SC. Biochem Pharmacol. https://doi.org/10.1016/j.jece.2018.102830

    Article  Google Scholar 

  34. Gutiérrez-Murillo MDM, Devesa JA, Morales R (2018) Olive tree basketry (Olea europaea L.): description of objects and traditional rod selection in a contemporary collection. Indian J Tradit Knowl 17:525–533

    Google Scholar 

  35. Aouidi F, Okba A, Hamdi M (2017) Valorization of functional properties of extract and powder of olive leaves in raw and cooked minced beef meat. J Sci Food Agric 97:3195–3203. https://doi.org/10.1002/jsfa.8164

    Article  PubMed  CAS  Google Scholar 

  36. Koutrotsios G, Patsou M, Mitsou EK et al (2019) Valorization of olive by-products as substrates for the cultivation of ganoderma lucidum and pleurotus ostreatus mushrooms with enhanced functional and prebiotic properties. Catalysts 9(6):537. https://doi.org/10.3390/catal9060537

  37. Mugnai G, Borruso L, Mimmo T et al (2021) Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production. Bioresour Technol 319:124157. https://doi.org/10.1016/J.BIORTECH.2020.124157

  38. Toledo M, Gutiérrez MC, Peña A et al (2020) Co-composting of chicken manure, alperujo, olive leaves/pruning and cereal straw at full-scale: compost quality assessment and odour emission. Process Saf Environ Prot 139:362–370. https://doi.org/10.1016/j.psep.2020.04.048

    Article  CAS  Google Scholar 

  39. Roulia M, Kontezaki E, Kalogeropoulos N, Chassapis K (2021) One step bioremediation of olive-oil-mill waste by organoinorganic catalyst for humics-rich soil conditioner production. Agronomy 11(6):1114. https://doi.org/10.3390/agronomy11061114

  40. Miranda I, Simões R, Medeiros B et al (2019) Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresour Technol 292:121936. https://doi.org/10.1016/j.biortech.2019.121936

  41. Sciubba F, Chronopoulou L, Pizzichini D et al (2020) Olive mill wastes: a source of bioactive molecules for plant growth and protection against pathogens. Biology 9:1–20. https://doi.org/10.3390/biology9120450

    Article  CAS  Google Scholar 

  42. Sánchez-Gutiérrez M, Espinosa E, Bascón-Villegas I et al (2020) Production of cellulose nanofibers from olive tree harvest—a residue with wide applications. Agronomy 10(5):696. https://doi.org/10.3390/agronomy10050696

  43. Conde E, Cara C, Moure A et al (2009) Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem 114:806–812. https://doi.org/10.1016/j.foodchem.2008.10.017

    Article  CAS  Google Scholar 

  44. Espeso J, Isaza A, Lee JY et al (2021) Olive leaf waste management. Front Sustain Food Syst 5:1–13. https://doi.org/10.3389/fsufs.2021.660582

    Article  Google Scholar 

  45. Al-Qodah Z, Al-Zoubi H, Hudaib B et al (2022) Sustainable vs. conventional approach for olive oil wastewater management: a review of the state of the art. Water 14(11):1695. https://doi.org/10.3390/w14111695

  46. Sierra J, Martí E, Montserrat G et al (2001) Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Sci Total Environ 279:207–214. https://doi.org/10.1016/S0048-9697(01)00783-5

    Article  PubMed  CAS  Google Scholar 

  47. Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525. https://doi.org/10.1016/0043-1354(83)90111-2

    Article  CAS  Google Scholar 

  48. Yusoff S, Hashim R (1996) Transactions on Ecology and the Environment vol 11, © 1996 WIT Press, www.witpress.com, ISSN 1743–3541. 11

  49. Taamallah H, Bouajila K, Ellefi K (2015) Valorisation des Margines pour Ameliorer la Qualite des Sols dans les Zones Arides Tunisiennes = Valorization of Oil Mill Wastewater (OMW) to Improve the Quality of Soils in Tunisian Drylands. AJAE 5:92–105. https://doi.org/10.12816/0045910

  50. Gargouri B, Ben Brahim S, Marrakchi F et al (2022) Impact of wastewater spreading on properties of Tunisian soil under arid climate. Sustainability 14:3177. https://doi.org/10.3390/su14063177

    Article  CAS  Google Scholar 

  51. Bechir Ben Rouina and Kamel Gargouri (2022) 7 èmes Journées Méditerranéennes de l’Olivier Meknès, Maroc. 21 -23 Octobre 2014 L’épandage des margines sur les terres agricoles : résultats et gestion pratique

  52. Hammami SBM, De la Rosa R, Sghaier-Hammami B et al (2012) Reliable and relevant qualitative descriptors for evaluating complex architectural traits in olive progenies. Sci Hortic 143:157–166. https://doi.org/10.1016/j.scienta.2012.06.009

  53. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. https://doi.org/10.1006/abio.1999.4019

    Article  PubMed  Google Scholar 

  54. Sharov AA, Dudekula DB, Ko MSH (2005) A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21:2548–2549. https://doi.org/10.1093/bioinformatics/bti343

    Article  PubMed  CAS  Google Scholar 

  55. Mekki A, Chaouch A, Vargougui L et al (2019) Ecophysiologicals responses of olive trees ( Olea Europaea L. ) hybrid varieties in soil amended with olive mill waste waters. J Water Sci Eng 1:1–10

    Google Scholar 

  56. Khdair AI, Abu-Rumman G, Khdair SI (2019) Pollution estimation from olive mills wastewater in Jordan. Heliyon 5:e02386. https://doi.org/10.1016/j.heliyon.2019.e02386

  57. Suzzi G, Tofalo R (2009) Trattamento dei reflui. In: Collana Coltura & Cultura - L’ulivo e l’olio, Bayer CropScience, In: Pisante, M., Inglese, P., Lercker, G. Bologna, pp 690–695

  58. Borja R, Sánchez E, Raposo F et al (2006) A study of the natural biodegradation of two-phase olive mill solid waste during its storage in an evaporation pond. Waste Manage 26:477–486. https://doi.org/10.1016/j.wasman.2005.02.024

    Article  CAS  Google Scholar 

  59. Rinaldi M, Rana G, Introna M (2003) Olive-mill wastewater spreading in southern Italy: effects on a durum wheat crop. Field Crop Res 84:319–326. https://doi.org/10.1016/S0378-4290(03)00097-2

    Article  Google Scholar 

  60. Nasini L, Proietti P (2014) Olive harvesting. In: Peri C (ed) The Extra-Virgin Olive Oil Handbook. John Wiley & Sons, Ltd, Chichester, UK, pp 87–105

  61. Aviani I, Raviv M, Hadar Y et al (2012) Effects of harvest date, irrigation level, cultivar type and fruit water content on olive mill wastewater generated by a laboratory scale ‘Abencor’ milling system. Biores Technol 107:87–96. https://doi.org/10.1016/j.biortech.2011.12.041

    Article  CAS  Google Scholar 

  62. Kavvadias V, Doula MK, Komnitsas K, Liakopoulou N (2010) Disposal of olive oil mill wastes in evaporation ponds: Effects on soil properties. J Hazard Mater 182:144–155. https://doi.org/10.1016/j.jhazmat.2010.06.007

    Article  PubMed  CAS  Google Scholar 

  63. Ammar E, Nasri M, Medhioub K (2005) Isolation of Enterobacteria able to degrade simple aromatic compounds from the wastewater from olive oil extraction. World J Microbiol Biotechnol 21:253–259. https://doi.org/10.1007/s11274-004-3625-y

    Article  CAS  Google Scholar 

  64. Stasinakis AS, Elia I, Petalas AV, Halvadakis CP (2008) Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. J Hazard Mater 160:408–413. https://doi.org/10.1016/j.jhazmat.2008.03.012

    Article  PubMed  CAS  Google Scholar 

  65. Azzam MOJ, Al-Gharabli SI, Al-Harahsheh MS (2015) Olive mills wastewater treatment using local natural Jordanian clay. Desalin Water Treat 53:627–636. https://doi.org/10.1080/19443994.2013.846232

    Article  CAS  Google Scholar 

  66. Caputo AC, Scacchia F, Pelagagge PM (2003) Disposal of by-products in olive oil industry: waste-to-energy solutions. Appl Therm Eng 23:197–214. https://doi.org/10.1016/S1359-4311(02)00173-4

    Article  Google Scholar 

  67. Ilarioni L, Proietti P (2014) Olive tree cultivars. In: Peri C (ed) The Extra-Virgin Olive Oil Handbook. John Wiley & Sons, Ltd, Chichester, UK, pp 59–67

  68. Alburquerque J, Gonzalvez J, Garcia D, Cegarra J (2007) Effects of a compost made from the solid by-product (“alperujo”) of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.). Biores Technol 98:940–945. https://doi.org/10.1016/j.biortech.2006.04.014

    Article  CAS  Google Scholar 

  69. Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485. https://doi.org/10.1002/jctb.1553

    Article  CAS  Google Scholar 

  70. Bargougui L, Chaieb M, Mekki A (2022) Physiological and growth responses of young plants of three native olive cultivars to olive waste compost. J Plant Nutr 45(16):2478–2498. https://doi.org/10.1080/01904167.2022.2058538

  71. Mekki A, Dhouib A, Sayadi S (2013) Review: Effects of olive mill wastewater application on soil properties and plants growth. Int J Recycl Org Waste Agricult 2:15. https://doi.org/10.1186/2251-7715-2-15

  72. Dbara S, Ouni A, Brahim M, Fezai N (2019) Does olive mill wastewater stimulate olive plants growth? J Plant Nutr 42:58–66. https://doi.org/10.1080/01904167.2018.1549669

    Article  CAS  Google Scholar 

  73. Tajini F, Ouerghui A, Karim H (2020) Effect of irrigation with olive-mill waste-water on physiological and biochemical parameters as well as heavy-metal accumulation in common bean ( Phaseolus vulgaris L .). J New Sci 66:10

  74. Ouzounidou G, Ntougias S, Asfi M et al (2012) Raw and fungal-treated olive-mill wastewater effects on selected parameters of lettuce (Lactuca sativa L.) growth -the role of proline. J Environ Sci Health B Pestic Food Contam Agric Wastes 47:728–735. https://doi.org/10.1080/03601234.2012.669326

    Article  CAS  Google Scholar 

  75. Proietti P, Famiani F (2002) Diurnal and seasonal changes in photosynthetic characteristics in different olive (Olea europaea L.) cultivars. Photosynthetica 40:171–176. https://doi.org/10.1023/A:1021329220613

    Article  CAS  Google Scholar 

  76. Mohawesh O, Al-Hamaiedeh H, Albalasmeh A et al (2019) Effect of Olive Mill Wastewater (OMW) application on soil properties and wheat growth performance under rain-fed conditions. Water Air Soil Pollut 230:160. https://doi.org/10.1007/s11270-019-4208-8

  77. Mohawesh O, Albalasmeh A, Al-Hamaiedeh H et al (2020) Controlled land application of Olive Mill Wastewater (OMW): enhance soil indices and barley growth performance in arid environments. Water Air Soil Pollut 231:214. https://doi.org/10.1007/s11270-020-04612-z

  78. Plett DC, Møller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ. https://doi.org/10.1111/j.1365-3040.2009.02086.x

    Article  Google Scholar 

  79. Tekaya M, Mechri B, Dabbaghi O et al (2016) Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality. Agric Water Manag 178:180–188. https://doi.org/10.1016/j.agwat.2016.09.023

    Article  Google Scholar 

  80. Belaqziz M, El-Abbassi A, Lakhal EK et al (2016) Agronomic application of olive mill wastewater: effects on maize production and soil properties. J Environ Manage 171:158–165. https://doi.org/10.1016/j.jenvman.2016.02.006

    Article  PubMed  CAS  Google Scholar 

  81. Janicka-Russak M, Kabała K (2015) The role of plasma membrane H+-ATPase in salinity stress of plants. Part of the Progress in Botany book series (BOTANY, vol 76)

  82. Rusan MJM, Albalasmeh AA, Malkawi HI (2016) Treated olive mill wastewater effects on soil properties and plant growth. Water Air Soil Pollut 227:1–10. https://doi.org/10.1007/s11270-016-2837-8

    Article  CAS  Google Scholar 

  83. Bokhtiar SM, Huang HR, Li YR, Dalvi VA (2012) Effects of silicon on yield contributing parameters and its accumulation in abaxial epidermis of sugarcane leaf blades using energy dispersive x-ray analysis. J Plant Nutr. https://doi.org/10.1080/01904167.2012.676379

    Article  Google Scholar 

  84. Liang Y, Nikolic M, Bélanger R et al (2015) Silicon in Agriculture. Silicon in Agriculture. https://doi.org/10.1007/978-94-017-9978-2

  85. Gunes A, Cicek N, Inal A et al (2006) Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre- and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ 52(8):368–376. https://doi.org/10.17221/3454-pse

  86. Lee ZS, Chin SY, Lim JW, et al (2019) Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): a brief review. Environ Technol Innov 15:100377. https://doi.org/10.1016/j.eti.2019.100377

  87. Hosseini JF, Dehyouri S, Mirdamadi SM (2010) The perception of agricultural researchers about the role of nanotechnology in achieving food security. Afr J Biotechnol 9(37):6152–6157

  88. Khan MR, Siddiqui ZA (2020) Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Sci Hortic 265:109211. https://doi.org/10.1016/j.scienta.2020.109211

  89. Bokor B, Santos CS, Kostol D et al (2021) Mitigation of climate change and environmental hazards in plants: potential role of the beneficial metalloid silicon. J Hazard Mater 416:126193

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Research group project under grant number (R.G.P.2/73/44).

Funding

Authors are funded through the Large Research group project from the Deanship of Scientific Research at King Khalid University under research grant number (R.G.P. 2/73/44), the Project CLUSTER transfrontalier à SERVice du réseautage et qualification des filières AGRIcoles en oléiculture IEV-CT Italie-Tunisie 2014/2020 and the Tunisian Ministry of Higher Education, Scientific Research and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Besma SGHAIER-HAMMAMI, Sofiene B.M. HAMMAMI: Conceptualization, supervision, manuscript review and editing; Narjes BAAZAOUI, Khawla Bellili, Lobna ELLEUCH: Methodology, formal analysis and investigation, original draft preparation; Ridha ELLEUCH, Karim AOUNALLAH, Asma MAAZOUN, Sonia LABIDI; Resources management, data acquisition; Sofiene B.M. HAMMAMI: statistical analyses; Rached SALHI, Mouna MESSAOUD, Ali A. Shati, Mohammad Alfaifi: Methodology and manuscript editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sofiene B. M. Hammami or Besma Sghaier-Hammami.

Ethics declarations

Institutional Review Board

Not applicable.

Informed Consent

Not applicable.

Consent for Publication

Not applicable.

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Incorrect grant number and email address of author

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baazaoui, N., Bellili, K., Messaoud, M. et al. Bio-nano-remediation of Olive Oil Mill Wastewater using Silicon Dioxide Nanoparticles for Its Potential Use as Biofertilizer for Young Olive Plants. Silicon 15, 7395–7411 (2023). https://doi.org/10.1007/s12633-023-02585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02585-2

Keywords

Navigation