Skip to main content
Log in

Assessment of Osteogenic Differentiation Potential of Cytocompatible Rice Husk-Derived Lignin/Silica Nanohybrids for Bone Tissue Engineering

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Currently, agro-industrial co-product and waste management by developing new materials have received immense attention. In this way, rice husk (RH), an inexorable co-product of rice mills, generates a considerable quantity worldwide. According to the rice husk chemical composition, it can be served as an excellent eco-friendly, a readily available, sustainable, and renewable precursor for high-value materials. Thus, we have successfully prepared lignin/silica nanohybrids (LiSNHs) using the RH as a bioprecursor through a facile approach in this present study. The RH-derived LiSNHs were characterized using an X-ray diffractometer, transmission electron microscope, and thermal gravimetric analysis. The cytocompatibility behavior of RH-derived LiSNHs was investigated using cell viability and acridine orange/ ethidium bromide staining assessment. Furthermore, we have examined the LiSNHs role on the osteogenic differentiation potential in human mesenchymal stem cells (hMSCs). TEM images of the LiSNHs display 5 – 35 nm in diameter tiny silica nanostructures conjugated on the lignin spheres with ~ 200 nm. The LiSNHs showed outstanding thermal stability in thermogravimetric analysis. The cell viability and microscopic examination indicate that LiSNHs do not cause any remarkable changes in cell viability and health. Interestingly, the LiSNHs triggers the osteogenic differentiation in hMSCs by up-regulation of BMP-2 and ALP genes expression. The overall study concludes that RH-derived LiSNHs possessed excellent cytocompatibility that enhanced osteogenic differentiation in hMSCs, an ideal for bioengineering applications. As well, the agro-industrial waste RH-derived LiSNHs is considered as a biomaterial for various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the finding of this study are included within the article and in the supplementary data document attached and will be available to the readership of this journal upon publication.

References

  1. Dey T, Bhattacharjee T, Nag P, Ghati A, Kuila A (2021) Valorization of agro-waste into value added products for sustainable development. Bioresourc Technol Rep 16:100834

    Article  CAS  Google Scholar 

  2. Kauldhar BS, Yadav SK (2018) Turning waste to wealth: A direct process for recovery of nano-silica and lignin from paddy straw agro-waste. J Clean Prod 194:158–166

    Article  CAS  Google Scholar 

  3. Mehmood T, Nadeem F, Qamar SA, Bilal M, Iqbal H (2021) Bioconversion of agro-industrial waste into value-added compounds. In Sustainable bioconversion of waste to value added products. 349–368. Springer, Cham.

  4. Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions–a review. Biores Technol 100(16):3792–3798

    Article  CAS  Google Scholar 

  5. Kumar B, Verma P (2021) Biomass-based biorefineries: an important architype towards a circular economy. Fuel 288:119622

    Article  CAS  Google Scholar 

  6. Cho EJ, Trinh LTP, Song Y, Lee YG, Bae HJ (2020) Bioconversion of biomass waste into high value chemicals. Biores Technol 298:122386

    Article  CAS  Google Scholar 

  7. Diwan B, Parkhey P, Gupta P (2018) From agro-industrial wastes to single cell oils: a step towards prospective biorefinery. Folia Microbiol 63(5):547–568

    Article  CAS  Google Scholar 

  8. Alshatwi AA, Athinarayanan J, Periasamy VS (2015) Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng, C 47:8–16

    Article  CAS  Google Scholar 

  9. Athinarayanan J, Periasamy VS, Qasem AA, Alshatwi AA (2018) Borassus flabellifer biomass lignin: Isolation and characterization of its antioxidant and cytotoxic properties. Sustainable Chemistry and Pharmacy 10:89–96

    Article  Google Scholar 

  10. Blissett R, Sommerville R, Rowson N, Jones J, Laughlin B (2017) Valorisation of rice husks using a TORBED® combustion process. Fuel Process Technol 159:247–255

    Article  CAS  Google Scholar 

  11. Steven S, Restiawaty E, Bindar Y (2021) Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect. Renew Sustain Energy Rev 149:111329

    Article  CAS  Google Scholar 

  12. Ugheoke IB, Mamat O (2012) A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo Int J Sci Technol 6(3):430–448

    CAS  Google Scholar 

  13. Lu Q, Yang XL, Zhu XF (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrol 82(2):191–198

    Article  CAS  Google Scholar 

  14. Abbas A, Ansumali S (2010) Global potential of rice husk as a renewable feedstock for ethanol biofuel production. BioEnergy Res 3(4):328–334

    Article  Google Scholar 

  15. Dunnigan L, Morton BJ, Hall PA, Kwong CW (2018) Production of biochar and bioenergy from rice husk: Influence of feedstock drying on particulate matter and the associated polycyclic aromatic hydrocarbon emissions. Atmos Environ 190:218–225

    Article  CAS  Google Scholar 

  16. Muthukrishnan S, Kua HW, Yu LN, Chung JK (2020) Fresh properties of cementitious materials containing rice husk ash for construction 3D printing. J Mater Civ Eng 32(8):04020195

    Article  Google Scholar 

  17. Jin H, Wu S, Li T, Bai Y, Wang X, Zhang H, Xu H, Kong C, Wang H (2019) Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors. Appl Surf Sci 488:593–599

    Article  CAS  Google Scholar 

  18. Chen J, Kong Q, Liu Z, Bi Z, Jia H, Song G, Xie L, Zhang S, Chen CM (2019) High yield silicon carbide whiskers from rice husk ash and graphene: growth method and thermodynamics. ACS Sustain Chem Eng 7(23):19027–19033

    Article  CAS  Google Scholar 

  19. Muramatsu H, Kim YA, Yang KS, Cruz-Silva R, Toda I, Yamada T, Terrones M, Endo M, Hayashi T, Saitoh H (2014) Rice husk-derived graphene with nano-sized domains and clean edges. Small 10(14):2766–2770

    Article  PubMed  CAS  Google Scholar 

  20. Wang Z, Yu J, Zhang X, Li N, Liu B, Li Y, Wang Y, Wang W, Li Y, Zhang L, Dissanayake S (2016) Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: a comprehensive utilization strategy. ACS Appl Mater Interfaces 8(2):1434–1439

    Article  PubMed  CAS  Google Scholar 

  21. Athinarayanan J, Periasamy VS, Alshatwi AA (2014) Biogenic silica–metal phosphate (metal= Ca, Fe or Zn) nanocomposites: fabrication from rice husk and their biomedical applications. J Mater Sci - Mater Med 25(7):1637–1644

    Article  PubMed  CAS  Google Scholar 

  22. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA (2015) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41(1):275–281

    Article  CAS  Google Scholar 

  23. Khat-Udomkiri N, Sivamaruthi BS, Sirilun S, Lailerd N, Peerajan S, Chaiyasut C (2018) Optimization of alkaline pretreatment and enzymatic hydrolysis for the extraction of xylooligosaccharide from rice husk. AMB Express 8(1):1–10

    Article  CAS  Google Scholar 

  24. Renault H, Werck-Reichhart D, Weng JK (2019) Harnessing lignin evolution for biotechnological applications. Curr Opin Biotechnol 56:105–111

    Article  PubMed  CAS  Google Scholar 

  25. Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269

    Article  CAS  Google Scholar 

  26. Espinoza-Acosta JL, Torres-Chávez PI, Olmedo-Martínez JL, Vega-Rios A, Flores-Gallardo S, Zaragoza-Contreras EA (2018) Lignin in storage and renewable energy applications: A review. J Energy Chem 27(5):1422–1438

    Article  Google Scholar 

  27. Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG (2019) A concise review of current lignin production, applications, products and their environmental impact. Ind Crops Prod 139:111526

    Article  CAS  Google Scholar 

  28. Yue X, Yi S, Wang R, Zhang Z, Qiu S (2018) Synergistic effect based NixCo1-x architected Zn0. 75Cd0. 25S nanocrystals: an ultrahigh and stable photocatalysts for hydrogen evolution from water splitting. Appl Catal B 224:17–26

    Article  CAS  Google Scholar 

  29. Younis MR, An RB, Yin YC, Wang S, Ye D, Xia XH (2019) Plasmonic nanohybrid with high photothermal conversion efficiency for simultaneously effective antibacterial/anticancer photothermal therapy. ACS Appl Bio Mater 2(9):3942–3953

    Article  PubMed  CAS  Google Scholar 

  30. Xiao Y, Jin Z, He L, Ma S, Wang C, Mu X, Song L (2020) Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Compos B Eng 182:107616

    Article  CAS  Google Scholar 

  31. Figueiredo P, Lintinen K, Kiriazis A, Hynninen V, Liu Z, Bauleth-Ramos T et al (2017) In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 121:97–108

    Article  PubMed  CAS  Google Scholar 

  32. Raschip IE, Hitruc GE, Vasile C, Popescu M-C (2013) Effect of the lignin type on the morphology and thermal properties of the xanthan lignin hydrogels. Int J Biol Macromolec 54:230–237

    Article  CAS  Google Scholar 

  33. Kai D, Ren W, Tian L, Chee PL, Liu Y, Ramakrishna S et al (2016) Engineering Poly(lactide)– Lignin Nanofibers with Antioxidant Activity for Biomedical Application. ACS Sustain Chem Eng 4:5268–5276

    Article  CAS  Google Scholar 

  34. Qu Y, Tian Y, Zou B, Zhang J, Zheng Y, Wang L, Li Y, Rong C, Wang Z (2010) A novel mesoporous lignin/silica hybrid from rice husk produced by a sol–gel method. Biores Technol 101(21):8402–8405

    Article  CAS  Google Scholar 

  35. Klapiszewski Ł, Nowacka M, Milczarek G, Jesionowski T (2013) Physicochemical and electrokinetic properties of silica/lignin biocomposites. Carbohyd Polym 94(1):345–355

    Article  CAS  Google Scholar 

  36. Xue B, Wang X, Yu L, Di B, Chen Z, Zhu Y, Liu X (2020) Self-assembled lignin-silica hybrid material derived from rice husks as the sustainable reinforcing fillers for natural rubber. Int J Biol Macromol 145:410–416

    Article  PubMed  CAS  Google Scholar 

  37. Athinarayanan J, Periasamy VS, Qasem AA, Al-Shagrawi RA, Alshatwi AA (2019) Synthesis of SiO2 nanostructures from Pennisetum glaucum and their effect on osteogenic differentiation for bone tissue engineering applications. J Mater Sci - Mater Med 30(2):1–10

    Article  CAS  Google Scholar 

  38. Athinarayanan J, Alshatwi AA, Periasamy VS (2020) Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohyd Polym 235:115961

    Article  CAS  Google Scholar 

  39. Athinarayanan J, Periasamy VS, Alshatwi AA (2021) Fabrication of cellulose nanocrystal-decorated hydroxyapatite nanostructures using ultrasonication for biomedical applications. Biomass Convers Biorefin 1–14.

  40. Peng H, Zhou M, Yu Z, Zhang J, Ruan R, Wan Y, Liu Y (2013) Fractionation and characterization of hemicelluloses from young bamboo (Phyllostachys pubescens Mazel) leaves. Carbohydr Polym 95:262–271

    Article  PubMed  CAS  Google Scholar 

  41. He Z, Li Y, Liu C, Li Y, Qian M, Zhu Y, Wang X (2021) Controllable conversion of biomass to lignin-silica hybrid nanoparticles: High-performance renewable dual-phase fillers. Waste Manage 135:381–388

    Article  CAS  Google Scholar 

  42. Alshatwi AA, Athinarayanan J, Periasamy VS (2022) Simultaneous fabrication of carbon microspheres, lignin/silica nanohybrids, and cellulose nanostructures from rice husk. Biomass Convers Biorefin 1–11.

  43. Athinarayanan J, Periasamy VS, Alshatwi AA (2022) Unveiling the Biocompatible Properties of Date Palm Tree (Phoenix Dactylifera L) Biomass-Derived Lignin Nanoparticles. ACS omega 7(23):19270–19279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jaafari SAAH, Athinarayanan J, Periasamy VS, Alshatwi AA (2020) Biogenic silica nanostructures derived from Sorghum bicolor induced osteogenic differentiation through BSP, BMP-2 and BMP-4 gene expression. Process Biochem 91:231–240

    Article  Google Scholar 

  45. Kim K, Dean D, Lu A, Mikos AG, Fisher JP (2011) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 7(3):1249–1264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the Research Supporting Project (RSP2023R178), King Saud University, Riyadh, Saudi Arabia.

Funding

This study was funded by the Research Supporting Project number (RSP2023R178), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Jegan Athinarayanan: Conceptualization, Methodology, Data curation, Writing- Original draft preparation. Ali A Alshatwi and Vaiyapuri Subbarayan Periasamy: Conceptualization, Investigation, Supervision, Reviewing and Editing.

Corresponding author

Correspondence to Ali A. Alshatwi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

The authors declare our consent to participate.

Consent for Publication

The authors declare our consent for publication upon acceptance.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 346 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athinarayanan, J., Periasamy, V.S. & Alshatwi, A.A. Assessment of Osteogenic Differentiation Potential of Cytocompatible Rice Husk-Derived Lignin/Silica Nanohybrids for Bone Tissue Engineering. Silicon 15, 7235–7245 (2023). https://doi.org/10.1007/s12633-023-02573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02573-6

Keywords

Navigation