Skip to main content

Advertisement

Log in

Newly Fabricated Ternary PAAm-PVA-PVP Blend Polymer Doped by SiO2: Absorption and Dielectric Characteristics for Solar Cell Applications and Antibacterial Activity

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon oxide nanoparticles (SiO2 NPs) attracted nanomaterials for tuning the structure, characterizations, band gap, and dielectric properties. Newly ternary blend polymers nanocomposites reinforced using SiO2 nanoparticles were fabricated and investigated. Poly(acrylamide) (PAAm), poly(vinyl alcohol) (PVA), and poly(vinyl pyrrolidone) (PVP) were mixed with different ratios and loaded with different ratios of SiO2 (x = 0.00, 0.01, 0.03, and 0.05) wt. % applying green-easy solution-casting procedure. X-ray diffraction (XRD), infrared Fourier-transform spectroscopy (FTIR), optical microscopy (OPM), field emission scanning electron microscope (FE-SEM), UV–visible spectrophotometer, DC electrical meter and antibacterial activity of the nanocomposite were used to characterizations the samples. FTIR spectra exhibited significant interfacial interaction between the component matrixes. XRD patterns for samples showed a broad peak between ~ 10–50°. OPM and FESEM images showed a homogeneous surface and excellent distribution of nanoparticles in the matrix. The optical absorption results enhanced from 0.73 to 0.91 at 200 nm, and the energy gap improved from 4.8 to 3.4 eV for allowed indirect transition and from 4.2 to 3.1 eV for forbidden indirect transition. The dielectric constant and loss improved from 0.20 to 0.53, and outstanding enhancement was presented in the electrical conductivity. SiO2 NPs exhibited notable improvement in the inhibited zone of antibacterial activity from 0.00 to 24 mm of S. aureus and 23 mm of E. coli compared to ternary blend polymers. These nanocomposites are promising for various applications, such as solar cells, optoelectronic, and biology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data are available in the manuscript.

References

  1. Ali Al-Asbahi B, Qaid SMH, Ghaithan HM, Alhamedi Alanezi A (2021) Influence of SiO2/TiO2 nanocomposites on dual resonance Förster energy transfer in ternary hybrid thin films. Results Phys 24:104142. https://doi.org/10.1016/j.rinp.2021.104142

  2. Wang Y, Chen J, Do Kim H et al (2018) Ternary blend solar cells based on a conjugated polymer with diketopyrrolopyrrole and carbazole units. Front Energy Res 6:1–9. https://doi.org/10.3389/fenrg.2018.00113

    Article  Google Scholar 

  3. Lu L, Chen W, Xu T, Yu L (2015) High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat Commun 6:1–7. https://doi.org/10.1038/ncomms8327

    Article  CAS  Google Scholar 

  4. Pacchioni G, Skuja L, Griscom DL (2012) Defects in SiO2 and related dielectrics: science and technology. In: Pacchioni G, Skuja L, Griscom DL (eds)  NATO Science Series II: Mathematics, Physics and Chemistry, NAII, vol 2. Springer Dordrecht. https://doi.org/10.1007/978-94-010-0944-7

  5. Wan Z, Huang S, Green MA, Conibeer G (2011) Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix. Nanoscale Res Lett 6:1–7

    Article  Google Scholar 

  6. Grayson M (1983) Encyclopedia of composite materials and components. Compos Struct 5(1):79–20. https://doi.org/10.1016/0263-8223(86)90015-2

    Article  Google Scholar 

  7. Al-Bermany E, Mekhalif AT, Banimuslem HA et al (2023) Effect of green synthesis bimetallic Ag@SiO2 core–shell nanoparticles on absorption behavior and electrical properties of PVA-PEO nanocomposites for optoelectronic applications. Silicon. https://doi.org/10.1007/s12633-023-02332-7

    Article  PubMed Central  Google Scholar 

  8. Choudhary S (2018) Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J Mater Sci Mater Electron 29:10517–10534

    Article  CAS  Google Scholar 

  9. Aldulaimi NR, Al-Bermany E (2022) Tuning the Bandgap and Absorption Behaviour of the Newly-Fabricated Ultrahigh Molecular weight Polyethylene Oxide- Polyvinyl Alcohol/ Graphene Oxide Hybrid Nanocomposites. Polym Polym Compos 30:1–13. https://doi.org/10.1177/09673911221112196

    Article  CAS  Google Scholar 

  10. Tanaka T, Vaughan AS (2022) Tailoring of nanocomposite dielectrics : from fundamentals to devices and applications. 441. https://doi.org/10.1201/9781315201535

  11. Abdali K (2022) Structural, Morphological, and Gamma Ray Shielding (GRS) Characterization of HVCMC/PVP/PEG Polymer Blend Encapsulated with Silicon Dioxide Nanoparticles. Silicon 1–6. https://doi.org/10.1007/s12633-022-01678-8

  12. Ghazi RA, Al-Mayalee KH, Al-Bermany E et al (2022) Impact of polymer molecular weights and graphene nanosheets on fabricated PVA-PEG/GO nanocomposites: Morphology, sorption behavior and shielding application. AIMS Mater Sci 9:584–603. https://doi.org/10.3934/matersci.2022035

    Article  CAS  Google Scholar 

  13. Smith RC, Liang C, Landry M et al (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans Dielectr Electr Insul 15:187–196. https://doi.org/10.1109/T-DEI.2008.4446750

    Article  CAS  Google Scholar 

  14. Guo Z, Zhang D, Wei S et al (2010) Effects of iron oxide nanoparticles on polyvinyl alcohol: Interfacial layer and bulk nanocomposites thin film. J Nanopart Res 12:2415–2426. https://doi.org/10.1007/s11051-009-9802-z

    Article  CAS  Google Scholar 

  15. Luo YL, Chen LL, Xu F, Feng QS (2012) Fabrication and characterization of copper nanoparticles in PVA/PAAm IPNs and swelling of the resulting nanocomposites. Met Mater Int 18:899–908. https://doi.org/10.1007/s12540-012-5024-5

    Article  CAS  Google Scholar 

  16. Jayaramudu T, Ko H-U, Kim HC et al (2019) Swelling behavior of polyacrylamide–cellulose nanocrystal hydrogels: swelling kinetics, temperature, and pH effects. Materials 12:2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Billmeyer FW (1963) Textbook of Polymer Science. Kobunshi 12:240–251. https://doi.org/10.1295/kobunshi.12.240

    Article  Google Scholar 

  18. Kolahalam LA, Kasi Viswanath IV, Diwakar BS et al (2019) Review on nanomaterials: Synthesis and applications. Mater Today Proc 18(6):2182–2190. https://doi.org/10.1016/j.matpr.2019.07.371

    Article  Google Scholar 

  19. Ali HE, Atta A, Senna MM (2015) Physico-chemical properties of carboxymethyl cellulose (CMC)/nanosized titanium oxide (TiO2) gamma irradiated composite. Arab J Nucl Sci Appl 48:44–52

    Google Scholar 

  20. Hussien HAJ, Kadhim RG, Hashim A (2021) Low-Cost Pressure Sensors Fabricated from Novel Polymeric Nanocomposites. J Phys Conf Ser 1818:012186. https://doi.org/10.1088/1742-6596/1818/1/012186

  21. Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci Mater Electron 26:5303–5309

    Article  CAS  Google Scholar 

  22. Abdali K, Rabee BH, Al-Bermany E et al (2023) Effect of Doping Sb2O3 NPs on Morphological, Mechanical, and Dielectric Properties of PVA/PVP Blend Film for Electromechanical Applications. Nano 2350011. https://doi.org/10.1142/S179329202350011X

  23. Hassan CM, Peppas NA (2000) Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. In: Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 37–65

  24. NimrodhAnanth A, Umapathy S, Sophia J et al (2011) On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl Nanosci 1:87–96

    Article  CAS  Google Scholar 

  25. Gautam A, Ram S (2010) Preparation and thermomechanical properties of Ag-PVA nanocomposite films. Mater Chem Phys 119:266–271. https://doi.org/10.1016/j.matchemphys.2009.08.050

    Article  CAS  Google Scholar 

  26. Ragab HM, Algethami N, Elamin NY et al (2022) An insight into the influence of Ag/Se nanoparticles on the structural, optical, and electrical properties of Cs/PAM nanocomposites films as application in electrochemical devices. J Mol Struct 1267:133619

    Article  CAS  Google Scholar 

  27. Gaabour LH (2019) Influence of silica nanoparticles incorporated with chitosan/polyacrylamide polymer nanocomposites. J Market Res 8:2157–2163. https://doi.org/10.1016/j.jmrt.2019.02.003

    Article  CAS  Google Scholar 

  28. Alsaad AM, Ahmad AA, Dairy ARAL et al (2020) Spectroscopic characterization of optical and thermal properties of (PMMA-PVA) hybrid thin films doped with SiO2 nanoparticles. Results Phys 19:103463. https://doi.org/10.1016/j.rinp.2020.103463

    Article  Google Scholar 

  29. Soliman TS, Vshivkov SA, Elkalashy SI (2020) Structural, thermal, and linear optical properties of SiO2 nanoparticles dispersed in polyvinyl alcohol nanocomposite films. Polym Compos 41:3340–3350. https://doi.org/10.1002/pc.25623

    Article  CAS  Google Scholar 

  30. Mansour AM, Abou Hammad AB, Bakr AM, El Nahrawy AM (2022) Silica Zinc Titanate Wide Bandgap Semiconductor Nanocrystallites: Synthesis and Characterization. Silicon 14:11715–11729. https://doi.org/10.1007/s12633-022-01886-2

    Article  CAS  Google Scholar 

  31. Jo N-B, Baek J-S, Kim E-S (2021) The Effect of PVA Binder Solvent Composition on the Microstructure and Electrical Properties of 0.98 BaTiO3–0.02 (Ba0. 5Ca0. 5) SiO3 Doped with Dy2O3. Processes 9:2067

    Article  CAS  Google Scholar 

  32. Abodood AAF, Abdali K, Mousa Al-Ogaili AO et al (2023) Effect of Molar Concentration and Solvent Type on Linear and NLO Properties of Aurintricarboxylic (ATA) Organic Dye for Image Sensor and Optical Limiter Applications. Int J Nanosci. https://doi.org/10.1142/S0219581X2350014X

    Article  Google Scholar 

  33. Ali AI, Salim SA, Kamoun EA (2022) Novel glass materials-based (PVA/PVP/Al2O3/SiO2) hybrid composite hydrogel membranes for industrial applications: synthesis, characterization, and physical properties. J Mater Sci: Mater Electron 33:10572–10584. https://doi.org/10.1007/s10854-022-08043-w

    Article  CAS  Google Scholar 

  34. Omar MA (1975) Elementary solid state physics: principles and applications. Am J Phys 43(10):929–933. https://doi.org/10.1119/1.9980

    Article  Google Scholar 

  35. Jothibas M, Manoharan C, Johnson Jeyakumar S, Praveen P (2015) Study on structural and optical behaviors of In2O3 nanocrystals as potential candidate for optoelectronic devices. J Mater Sci Mater Electron 26:9600–9606. https://doi.org/10.1007/s10854-015-3623-x

    Article  CAS  Google Scholar 

  36. Abdel-Baset T, Elzayat M, Mahrous S (2016) Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. Int J Polym Sci 2016:1707018. https://doi.org/10.1155/2016/1707018

  37. Agarwal S, Saraswat YK, Saraswat VK (2016) Study of Optical Constants of ZnO Dispersed PC/PMMA Blend Nanocomposites. Open Phys J 3:63–72. https://doi.org/10.2174/1874843001603010063

    Article  Google Scholar 

  38. Mahfoudh N, Karoui K, BenRhaiem A (2021) Optical studies and dielectric response of [DMA] 2 MCl 4 (M= Zn and Co) and [DMA] 2 ZnBr 4. RSC Adv 11:24526–24535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alsaad A, Al Dairy AR, Ahmad A et al (2021) Synthesis and Characterization of Polymeric (PMMA-PVA) Hybrid Thin Films Doped with TiO2 Nanoparticles Using Dip-Coating Technique. Crystals 11:99

    Article  CAS  Google Scholar 

  40. Al-Shawabkeh AF, Elimat ZM, Abushgair KN (2021) Effect of non-annealed and annealed ZnO on the optical properties of PVC/ZnO nanocomposite films. J Thermoplast Compos Mater 36(3):08927057211038631. https://doi.org/10.1177/08927057211038631

  41. Haiba AS, Gouda OE, Mahmoud SF, El-gendy AA (2014) Improving the Dielectric Properties of High Density Polyethylene by Incorporating Clay-Nanofiller. TELKOMNIKA (Telecommun Comput Electron Control) 12:763–772

    Article  Google Scholar 

  42. South M, Ozonoff S, McMahon WM (2005) Repetitive behavior profiles in Asperger syndrome and high-functioning autism. J Autism Dev Disord 35:145–158

    Article  PubMed  Google Scholar 

  43. Dweik H, Sultan W, Sowwan M, Makharza S (2008) Analysis characterization and some properties of polyacrylamide copper complexes. Int J Polym Mater Polym Biomater 57:228–244. https://doi.org/10.1080/00914030701413280

    Article  CAS  Google Scholar 

  44. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548

    Article  CAS  Google Scholar 

  45. Hendrawan H, Khoerunnisa F, Sonjaya Y, Putri AD (2019) Poly (vinyl alcohol)/glutaraldehyde/Premna oblongifolia merr extract hydrogel for controlled-release and water absorption application. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p 12048

  46. Abdali K, Al E, Khalid B, Abass H (2023) Impact the silver nanoparticles on properties of new fabricated polyvinyl alcohol ‑ polyacrylamide ‑ polyacrylic acid nanocomposites films for optoelectronics and radiation pollution applications. J Polym Res 30. https://doi.org/10.1007/s10965-023-03514-y

  47. Rao BS, Muralidhar J, Kumar RJ et al (2011) A comparison in radiative degradation of acrylamide polymers. Int J Chem Sci 9:109–116

    CAS  Google Scholar 

  48. Al Mogbel MS, Elabbasy MT, Mohamed RS et al (2021) Improvement in antibacterial activity of Poly Vinyl Pyrrolidone/Chitosan incorporated by graphene oxide NPs via laser ablation. J Polym Res 28:1–8

    Article  Google Scholar 

  49. Al-shammari AK, Al-Bermany E (2022) Polymer functional group impact on the thermo-mechanical properties of polyacrylic acid, polyacrylic amide- poly (vinyl alcohol) nanocomposites reinforced by graphene oxide nanosheets. J Polym Res 29:351. https://doi.org/10.1007/s10965-022-03210-3

    Article  CAS  Google Scholar 

  50. Aldulaimi NR, Al-Bermany E (2021) New Fabricated UHMWPEO-PVA Hybrid Nanocomposites Reinforced by GO Nanosheets: Structure and DC Electrical Behaviour. J Phys Conf Ser 1973:012164. https://doi.org/10.1088/1742-6596/1973/1/012164

    Article  CAS  Google Scholar 

  51. Abdali K (2022) Synthesis, characterization and USW sensor of PEO/PMMA/PVP doped with zirconium dioxide nanoparticles. Trans Electr Electron Mater 23:563–568. https://doi.org/10.1007/s42341-022-00388-7

    Article  Google Scholar 

  52. Al-shammari AK, Al-Bermany E (2021) New Fabricated (PAA-PVA/GO) and (PAAm-PVA/GO) Nanocomposites: Functional Groups and Graphene Nanosheets effect on the Morphology and Mechanical Properties. J Phys Conf Ser 1973:012165. https://doi.org/10.1088/1742-6596/1973/1/012165

    Article  CAS  Google Scholar 

  53. Rajesh K, Crasta V, Rithin Kumar NB et al (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26. https://doi.org/10.1007/s10965-019-1762-0

  54. Kadhim MA, Al-Bermany E (2021) New fabricated PMMA-PVA/graphene oxide nanocomposites: Structure, optical properties and application. J Compos Mater 55:2793–2806. https://doi.org/10.1177/0021998321995912

    Article  CAS  Google Scholar 

  55. MAQ B, Rahman MS (2015) Improvement of Swelling Behaviour of Poly (Vinyl Pyrrolidone) and Acrylic Acid Blend Hydrogel Prepared By the Application of Gamma Radiation. Org Chem Curr Res 04. https://doi.org/10.4172/2161-0401.1000138

  56. Desplentere F, Lomov SV, Woerdeman DL et al (2005) Micro-CT characterization of variability in 3D textile architecture. Compos Sci Technol 65:1920–1930

    Article  Google Scholar 

  57. Qiu M, Zhang Y, Wen B (2018) Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance. J Mater Sci Mater Electron 29:10437–10444. https://doi.org/10.1007/s10854-018-9100-6

    Article  CAS  Google Scholar 

  58. Feng Y, Zhang X, Shen Y et al (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohyd Polym 87:644–649. https://doi.org/10.1016/j.carbpol.2011.08.039

    Article  CAS  Google Scholar 

  59. Al-Jamal AN, KA O, Abbass KH et al (2023) Silver NPs reinforced the structural and mechanical properties of PVA-PAAm-PEG nanocomposites. AIP Conf Proc 030005:030005. https://doi.org/10.1063/5.0114621

    Article  CAS  Google Scholar 

  60. Phukan P, Saikia D (2013) Optical and Structural Investigation of CdSe Quantum Dots Dispersed in PVA Matrix and Photovoltaic Applications. Int J Photoenergy 2013:1–6. https://doi.org/10.1155/2013/728280

    Article  CAS  Google Scholar 

  61. Luo Q, Shan Y, Zuo X, Liu J (2018) Anisotropic tough poly(vinyl alcohol)/graphene oxide nanocomposite hydrogels for potential biomedical applications. RSC Adv 8:13284–13291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fortunati E, Luzi F, Puglia D et al (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant. Ind Crops Prod 67:439–447. https://doi.org/10.1016/j.indcrop.2015.01.075

    Article  CAS  Google Scholar 

  63. Abdali K, Abass KH, Al-bermany E et al (2022) Morphological, Optical, ElectricalCharacterizations and Anti-Escherichia coli Bacterial Efficiency (AECBE) of PVA/PAAm/PEO Polymer Blend Doped with Silver NPs. Nano Biomed Eng 14:114–122. https://doi.org/10.5101/nbe.v14i2.p114-122.Abstract

    Article  CAS  Google Scholar 

  64. Dhatarwal P, Sengwa RJ (2021) Nanofiller controllable optical parameters and improved thermal properties of (PVP/PEO)/Al2O3 and (PVP/PEO)/SiO2 nanocomposites. Optik 233. https://doi.org/10.1016/j.ijleo.2021.166594

  65. Jabbar SA, Khalil SM, Abdulridha AR et al (2022) Dielectric, AC Conductivity and Optical Characterizations of (PVA-PEG) Doped SrO Hybrid Nanocomposites.pdf. Key Eng Mater 936:83–92. https://doi.org/10.4028/v-3lkwx9

    Article  Google Scholar 

  66. Meshram SD, Rupnarayan RV, Jagtap SV et al (2015) Synthesis and characterization of lead oxide nanoparticles. Int J Chem Phys Sci 4:83–88

    Google Scholar 

  67. McLachlan DS, Chiteme C, Park C et al (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci Part B Polym Phys 43:3273–3287

    Article  CAS  Google Scholar 

  68. Hussein M, Hashim A (2012) Study of Dielectric Properties For (Calcium Oxide-poly-vinyl alcohol) Composites. Basic Education College Magazine For Educational and Humanities Sciences 2012. Acad Sci J 202–207. https://www.iasj.net/iasj/article/75088

  69. Prabhu YT, Rao KV, Kumari BS et al (2015) Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int Nano Lett 5:85–92. https://doi.org/10.1007/s40089-015-0141-z

    Article  CAS  Google Scholar 

  70. Behera SS, Patra JK, Pramanik K et al (2012) Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J Nano Sci Eng 2:196–200. https://doi.org/10.4236/wjnse.2012.24026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the department of Physics, University of Babylon, Iraq, for their support.

Author information

Authors and Affiliations

Authors

Contributions

Ehssan Al-Bermany designed the idea and experimental part and performed with analysis of the FTIR, SEM, OMI, and optical properties. Athar Iqbal Alawi performed and wrote the experiments, contributing to the electrical properties and antibacterial activity. Athar Iqbal Alawi wrote the first draft of the paper, and Ehssan Al-Bermany improved, revising the final version. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Ehssan Al-Bermany.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Declarations

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawi, A.I., Al-Bermany, E. Newly Fabricated Ternary PAAm-PVA-PVP Blend Polymer Doped by SiO2: Absorption and Dielectric Characteristics for Solar Cell Applications and Antibacterial Activity. Silicon 15, 5773–5789 (2023). https://doi.org/10.1007/s12633-023-02477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02477-5

Keywords

Navigation