Skip to main content

Advertisement

Log in

Modification and Development of the Structural, Optical and Antibacterial Characteristics of PMMA/Si3N4/TaC Nanostructures

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, (PMMA/Si3N4/TaC) nanocomposites has been prepared by casting technigue with variant content of)Si3N4/TaC( nanoparticles as promising materials to use in various electronics and optics nanodevices. The structural and optical properties have been examined. Field emission scanning electron microscope (FE-SEM) indicates that the homogenous, smooth and dispersed of Si3N4 and TaC NPs inside the PMMA matrix due to strong covalent interaction between the Si3N4 and TaC NPs in the PMMA matrix. Optical microscope (OM) images explained that increasing in content of nanoparticles forms network paths inside the polymeric matrix which act as charge carriers. The absorbance of (PMMA/Si3N4/TaC) nanocomposite increases as the concentrations of (Si3N4/TaC) nanoparticles increase while the transmittance decreases. The energy gap of (PMMA/Si3N4/TaC) nanocomposite was decreased from 4.4 eV for pure PMMA to 2.4 eV when the (Si3N4/TaC) NPs content reached (8 wt.%). This result made it potentially important for numerous optical domains and nanoscale optoelectronic devices. The absorption coefficient, extinction coefficient, refractive index, dielectric constants of real and imaginary parts and optical conductivity are rising with the rise of the weight percentages of Si3N4/TaC nanoparticles. The results of antibacterial application for (PMMA/Si3N4/TaC) nanocomposites showed that the inhibition zone for S. aureus and K. aerogenes increases with increasing the concentrations of Si3N4/TaC nanoparticles. The final obtained results showed that the (PMMA/Si3N4/TaC) nanostructures have excellent optical characteristics to employ in the optoelelectronics and antibecterial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Balazs AC, Emrick T, Russel TP (2006) Nanoparticle polymer composites: where two small worlds meet. Sci 314:1107–1110

    Article  CAS  Google Scholar 

  2. Tang E, Cheng G, XL M (2006) Preparation of nano-ZnO/PMMA composite particles via grafting of the co polymer onto the surface of Zinc oxide nano particles. Powder Technol 161:209–214

    Article  CAS  Google Scholar 

  3. Mahdi SM, Habeeb MA (2022) Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices. Digest J Nanomater Biostruct 17(3):941–948. https://doi.org/10.15251/DJNB.2022.173.941

    Article  Google Scholar 

  4. Peters K (2010) Polymer optical fiber sensors—a review. Smart Mater Struct 20(1):013002

    Article  Google Scholar 

  5. Hadi AH, Habeeb MA (2021) "The dielectric properties of (PVA-PVP-CdS) nanocomposites for gamma shielding applications. J Phys Conf Ser 1973(1):012063. https://doi.org/10.1088/1742-6596/1973/1/012063

    Article  CAS  Google Scholar 

  6. Hu X, Mei S, Wang F, Tang S, Xie D, Ding C, Wei J (2021) A microporous surface containing Si3N4/Ta microparticles of PEKK exhibits both antibacterial and osteogenic activity for inducing cellular response and improving osseointegration. Bioact Mater 6(10):3136–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahdi SM, Habeeb MA (2022) Fabrication and Tailored Structural and Dielectric characteristics of (SrTiO3/ NiO ) Nanostructure Doped (PEO/PVA) polymeric Blend for Electronics Fields. Phys Chem Solid State 23(4):785–792. https://doi.org/10.15330/pcss.23.4.785-792

    Article  CAS  Google Scholar 

  8. Xu Z, Wu H, Wang F, Kaewmanee R, Pan Y, Wang D, Qu P, Wang Z, Hu G, Zhao J, Zhao R, Wei J (2019) A hierarchical nanostructural coating of amorphous silicon nitride on polyetheretherketone with antibacterial activity and promoting responses of rBMSCs for orthopedic applications. J Mater Chem B 7:6035–6047

    Article  CAS  PubMed  Google Scholar 

  9. Obaid HN, Habeeb MA, Rashid FL, Hashim A (2013) Thermal energy storage by nanofluids. J Eng Appl Sci 8(5):143–145. https://doi.org/10.36478/jeasci.2013.143.145

    Article  Google Scholar 

  10. Ishikawa M, Bentley K, McEntire B, Bal B, Schwarz E, Xie C (2017) Surface topography of silicon nitride affects antimicrobial and osseointegrative propertiesof tibial implants in a murine model. J Biomed Mater Res 105:3413–3421

    Article  CAS  Google Scholar 

  11. Habeeb MA (2011) Effect of rate of deposition on the optical parameters of GaAs films. Eur J Sci Res 57(3):478–484

    Google Scholar 

  12. Wu H, Yang L, Qian J, Wang D, Pan Y, Wang X, Nabanita S, Tang T, Zhao J, Wei J (2017) Microporous coatings of PEKK/SN composites integration with PEKK exhibiting antibacterial and osteogenic activity, and promotion of osseointegration for bone substitutes. ACS Biomater Sci Eng 5:1290–1301

    Article  Google Scholar 

  13. Farhadizadeh AR, Ghomi H (2020) Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using first principle methods. Materials Research Express 7(3):036502

    Article  CAS  Google Scholar 

  14. Hayder N, Habeeb MA, Hashim A (2020) Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites. Egypt J Chem 63:577–592. https://doi.org/10.21608/ejchem.2019.14646.1887

    Article  Google Scholar 

  15. Abutalib MM, Rajeh A (2021) Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polymer Test 93:1–11. https://doi.org/10.1016/j.polymertesting.2020.107013

    Article  CAS  Google Scholar 

  16. Jebur QM, Hashim A, Habeeb MA (2020) Structural, A.C electrical and optical properties of (polyvinyl alcohol-polyethylene oxide-aluminum oxide) nanocomposites for piezoelectric devices. Egypt J Chem 63:719–734. https://doi.org/10.21608/ejchem.2019.14847.1900

    Article  Google Scholar 

  17. Li H, Chen Q, Zhao J, Urmila K (2015) Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep 5(1):1–13

    Google Scholar 

  18. Habeeb MA, Hashim A, Hayder N (2020) Fabrication of (PS-Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric and fluorescence properties for IR sensors. Egypt J Chem 63:709–717. https://doi.org/10.21608/ejchem.2019.13333.1832

    Article  Google Scholar 

  19. Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:410423. https://doi.org/10.1155/2014/410423.410423:2014

  20. Hashim A, Habeeb MA, Jebur QM (2020) Structural, dielectric and optical properties for (Polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites. Egypt J Chem 63:735–749. https://doi.org/10.21608/ejchem.2019.14849.1901

    Article  Google Scholar 

  21. Jothibas M, Manoharan C, Jeyakumar SJ, Praveen P (2015) Study on structural and optical behaviors of In2O3 nanocrystals as potential candidate for optoelectronic devices. J Mater Sci: Mater Electron 26:9600–9606. https://doi.org/10.1007/s10854-015-3623-x

    Article  CAS  Google Scholar 

  22. Jebur QM, Hashim A, Habeeb MA (2020) Fabrication, structural and optical properties for (Polyvinyl alcohol-polyethylene oxide iron oxide) nanocomposites. Egypt J Chem 63(2):611–623. https://doi.org/10.21608/ejchem.2019.10197.1669

    Article  Google Scholar 

  23. Abdel-Baset T, Elzayat M, Mahrous S (2016) Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. Int J Polym Sci 2016:1707018. https://doi.org/10.1155/2016/1707018

  24. Habeeb MA, Mahdi WS (2019) Characterization of (CMC-PVP-Fe2O3) nanocomposites for gamma shielding application. Int J Emerg Trends Eng Res 7(9):247–255. https://doi.org/10.30534/ijeter/2019/06792019

    Article  Google Scholar 

  25. Agarwal YS, Saraswat K, Saraswat KV (2016) Study of Optical Constants of ZnO Dispersed PC/PMMA Blend Nanocomposites. Open Phys J 3:63–72. https://doi.org/10.2174/1874843001603010063

    Article  Google Scholar 

  26. Habeeb MA, Hamza RSA (2018) Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for piezoelectric application. Indones J Electric Eng Inf 6(4):428–435. https://doi.org/10.11591/ijeei.v6i1.511

    Article  Google Scholar 

  27. Mahfoudh N, Karoui K, Ben Rhaiem A (2021) Optical studies and dielectric response of [DMA]2MCl4 (M = Zn and Co) and [DMA]2ZnBr4. RSC Adv 11(40):24526–24535. https://doi.org/10.1039/d1ra03652a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alsaad A, Al Dairy AR, Ahmad A, Qattan IA, Al Fawares S, Al-Bataineh Q (2021) Synthesis and Characterization of Polymeric (PMMA-PVA) Hybrid Thin Films Doped with TiO2 Nanoparticles Using Dip-Coating Technique, Crystals, Vol.11, (2021), https://doi.org/10.3390/cryst11020099

  29. Habeeb MA, Abdul Hamza RS (2018) Novel of (biopolymer blend-MgO) nanocomposites: Fabrication and characterization for humidity sensors. J Bionanosci 12(3):328–335. https://doi.org/10.1166/jbns.2018.1535

    Article  CAS  Google Scholar 

  30. Habeeb MA, Hashim A, Hayder N (2020) Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding. Egypt J Chem 63:697–708. https://doi.org/10.21608/ejchem.2019.12439.1774

    Article  Google Scholar 

  31. Costa RG, Brichi GS, Ribeiro C, Mattoso LH (2016) Nanocomposite fibers of poly (lactic acid)/titanium dioxide prepared by solution blow spinning. Polym Bull 73(11):2973–2985

    Article  CAS  Google Scholar 

  32. Abbas NK, Habeeb MA, Algidsawi AJK (2015) Preparation of chloro penta amine cobalt (III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate. Int J Polym Sci 2015:926789. https://doi.org/10.1155/2015/926789

    Article  CAS  Google Scholar 

  33. Rezvanpour M, Hasanzadeh M, Azizi D, Rezvanpour A, Alizadeh M (2018) Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage. Mater Chem Phys 215:299–304

    Article  CAS  Google Scholar 

  34. Habeeb MA, Kadhim WK (2014) Study the optical properties of (PVA-PVAC-Ti) nanocomposites. J Eng Appl Sci 9(4):109–113. https://doi.org/10.36478/jeasci.2014.109.113

    Article  Google Scholar 

  35. Chaudhari L, Nathuram R (2010) Absorption Coefficient of Polymers (Polyvinyl Alcohol) by Using Gamma Energy of 0.39MeV. Bulg J Phys 37:232–240

    CAS  Google Scholar 

  36. Habeeb MA (2014) Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites. J Eng Appl Sci 9(4):102–108. https://doi.org/10.36478/jeasci.2014.102.108

    Article  Google Scholar 

  37. Kolpakov S, Gordon N, Mou C, Zhou K (2014) Toward a New Generation of Photonic Humidity Sensors. J Sens 14:3986–4013. https://doi.org/10.3390/s140303986

    Article  CAS  Google Scholar 

  38. Hadi AH, Habeeb MA (2021) Effect of CdS nanoparticles on the optical properties of (PVA-PVP) blends. J Mech Eng Res Dev 44(3):265–274. https://jmerd.net/03-2021-265-274/

  39. Mahdi SM, Habeeb MA (2022) Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites for optoelectronics and antibacterial applications. Opt Quantum Electron 54(12):854. https://doi.org/10.1007/s11082-022-04267-6

    Article  CAS  Google Scholar 

  40. Salman S, Bakr N, Mahmood MH (2014) Preparation and study of some optical properties of (PVA- Ni(CH3COO)2) composites. Int J Curr Res 6(11):9638–9643

    Google Scholar 

  41. Mohammed AH, Habeeb MA (2022) Co2O3 Nanofiller-Based Polymer Blend Nanocomposites for Enhanced Optical Properties for Optoelectronics Devices. HIV Nurs 22(2):1167–1172. https://doi.org/10.31838/hiv22.02.225

    Article  Google Scholar 

  42. Mohammad A, Hooshyari K, Javanbakht M, Enhessari M (2013) Fabrication and Characterization of Poly Vinyl Alcohol/ Poly Vinyl Pyrrolidone/MnTiO Nanocomposite Membranes for PEM Fuel Cells. Iran J Energ Environ 4(2):86–90

    Google Scholar 

  43. Zike ZI, Habeeb MA (2022) Role of BaTiO3 /TiO2 Nanofillers on the Optical Characteristics of Biopolymer for Optics and Photonics Fields. HIV Nurs 22(2):1185–1189. https://doi.org/10.31838/hiv22.02.229

    Article  Google Scholar 

  44. Karthikeyan K, Poornaprakash N, Selvakumar N, Jeyasubrmanian (2009) Thermal Properties and Morphology of MgO-PVA Nanocomposite Film. J Nanostruct Polym Nanocomposites 5(4):83–88

    Google Scholar 

  45. Habeeb MA, Jaber ZS (2022) "Enhancement of Structural and Optical Properties of CMC/PAA Blend by Addition of Zirconium Carbide Nanoparticles for Optics and Photonics Applications. East Eur J Phys 4:176–182. https://doi.org/10.26565/2312-4334-2022-4-18

    Article  Google Scholar 

  46. Elmarzugi N, Adali T, Bentaleb A, Keleb EI, Mohamed AT, Hamza AM (2014) Spectroscopic Characterization of PEG- DNA Biocomplexes by FTIR. J Appl Pharm Sci 4(8):6–10

    Google Scholar 

  47. Kumar D, Karan Jat S, Khanna PK, Vijayan N, Banerjee S (2012) Synthesis, Characterization, and Studies of PVA/Co-Doped ZnO Nanocomposite Films. Int J Green Nanotechnol 4:408–416

    Article  CAS  Google Scholar 

  48. Srikanth C, Sridhar C, Nagabhushana BM, Mathad RD (2014) Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PVA) Nano-composite Films. J Eng Res Appl 4(10):38–46

    Google Scholar 

  49. Mahdi SM, Habeeb MA (2023) Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biologicalapplications. Polym Bull. https://doi.org/10.1007/s00289-023-04676-x

    Article  Google Scholar 

  50. Murhekar GH, Raut AR (2014) Electrical properties of modified polyvinyl alcohol conjugates and doped modified polyvinyl alcohol conjugates. Int J Chem Stud 2(2):77–82

    Google Scholar 

  51. Prabhu YT, Rao KV, Kumari BS, Kumar VSS, Pavani T (2015) Synthesis of Fe 3 O 4 nanoparticles and its antibacterial application. Int Nano Lett 5(2):85–92

    Article  CAS  Google Scholar 

  52. Behera SS, Patra JK, Pramanik K, Panda N, Thatoi H (2012) Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J Nano Sci Eng 2:196–200. https://doi.org/10.4236/wjnse.2012.24026

    Article  CAS  Google Scholar 

  53. Babu JR, Kumar KV (2014) Studies on Structural and Electrical Properties of NaHCO3 Doped PVA Films for Electrochemical Cell Applications. Int J Chem Tech Res 7(1):171–180

    CAS  Google Scholar 

  54. Dwech MH, Habeeb MA, Mohammed AH (2022) Fabrication and evaluation of optical characterstic of (PVA-MnO2–ZrO2) nanocomposites for nanodevices in optics and photonics. Ukr J Phys 67(10):757–762. https://doi.org/10.15407/ujpe67.10.757

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgments to University of Babylon

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Alaa Abass Mohammed and Majeed Ali Habeeb. The first draft of the manuscript was written by Majeed Ali Habeeb and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majeed Ali Habeeb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

The Research is not involving the studies on human or their data.

Conflict of interest

No conflict of interest.

Consent to participate

Consent.

Consent for publication

Consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.A., Habeeb, M.A. Modification and Development of the Structural, Optical and Antibacterial Characteristics of PMMA/Si3N4/TaC Nanostructures. Silicon 15, 5163–5174 (2023). https://doi.org/10.1007/s12633-023-02426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02426-2

Keywords

Navigation