Skip to main content

Advertisement

Log in

The Interactive Effects of Silicon and Arbuscular Mycorrhizal Fungi on Growth, Physio-biochemical Traits, and Cob Yield of Baby Corn Plants under Salt Stress

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Rising salinity in agricultural lands is among the major problems limiting productivity of agronomic and horticultural crops including baby corn (Zea mays L.). Soil application of silicon (Si) and arbuscular mycorrhizal fungi (AMF) inoculation have a proven role in alleviating salt stress and improving plant growth and development. However, the potential role of the integrated application of Si and AMF in alleviating salt stress in baby corn has not been thoroughly investigated. The objective of the present study was to determine the potential combined role of Si and AMF on growth, cob yield, and physio-biochemical traits of baby corn under salt stress. A polyhouse study consisting of four soluble Si doses (0, 15, 30, and 60 kg ha–1) applied in the form of monosilicic acid, two levels of AMF inoculation (inoculation of AMF [+ AMF] and without inoculation of AMF [–AMF]), and three salinity levels (0.7, 6, and 9 dS m–1) was conducted. Data on growth, cob yield, physio-biochemical parameters, and leaf ion concentration were collected. The results revealed that rising salinity severely impacted growth and cob yield of baby corn, and the plants were unable to produce any marketable cob at 9 dS m–1. The three-way interaction among Si, AMF inoculation, and salinity level was not significant for all evaluated parameters. The sole application of Si and AMF effectively improved growth, yield, and physiological traits of baby corn under different salinity levels. Nevertheless, integrated application of Si (60 kg ha–1) and AMF was even more effective for increasing shoot and root dry matter (with a respective increase of 10% and 4% than non-AMF-inoculated plants at the same Si dose), root colonization (132% higher than non-AMF-inoculated plants at the same Si dose), and accumulation of essential ions (K+, Ca2+, and K+/Na+ ratio). Therefore, it is recommended to apply 60 kg ha–1 of soluble Si along with AMF for baby corn cultivation in salt-affected soils (up to a maximum of 6 dS m–1 salinity level).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on request.

References

  1. Islam ATMT, Koedsuk T, Ullah H, Tisarum R, Jenweerawat S, Cha-um S, Datta A (2022) Salt tolerance of hybrid baby corn genotypes in relation to growth, yield, physiological, and biochemical characters. S Afr J Bot 147:808–819

    Article  CAS  Google Scholar 

  2. Islam ATMT, Ullah H, Himanshu SK, Tisarum R, Cha-um S, Datta A (2022) Effect of salicylic acid seed priming on morpho-physiological responses and yield of baby corn under salt stress. Sci Hortic 304:111304

    Article  CAS  Google Scholar 

  3. Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K (2018) Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. Int J Mol Sci 19:252

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ullah A, Bano A, Khan N (2021) Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Front Sustain Food Syst 5:618092

    Article  Google Scholar 

  5. Rehman S, Abbas G, Shahid M, Saqib M, Farooq ABU, Hussain M, Murtaza B, Amjad M, Naeem MA, Farooq A (2019) Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. Ecotoxicol Environ Saf 171:146–153

    Article  CAS  PubMed  Google Scholar 

  6. Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481

  7. Khan A, Khan AL, Muneer S, Kim YH, Al-Rawahi A, Al-Harrasi A (2019) Silicon and salinity: Crosstalk in crop-mediated stress tolerance mechanisms. Front Plant Sci 10:1429

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  9. Rutsaert P, Donovan J, Kimenju S (2021) Demand-side challenges to increase sales of new maize hybrids in Kenya. Technol Soc 66:101630

    Article  PubMed  PubMed Central  Google Scholar 

  10. Butcher K, Wick AF, DeSutter T, Chatterjee A, Harmon J (2016) Soil salinity: A threat to global food security. Agron J 108:2189–2200

    Article  CAS  Google Scholar 

  11. van Dijk M, Morley T, Rau M, Saghai Y (2021) A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat Food 2:494–501

    Article  PubMed  Google Scholar 

  12. Rani R, Sheoran RK, Soni PG, Kaith S, Sharma A (2017) Baby corn: A wonderful vegetable. Int J Sci Environ Technol 6:1407–1412

    Google Scholar 

  13. Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front Plant Sci 10:1068

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22:247–258

    Article  PubMed  Google Scholar 

  15. Li Z, Wu N, Meng S, Wu F, Liu T (2020) Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS One 15:e0231497

  16. Gupta S, Schillaci M, Walker R, Smith PMC, Watt M, Roessner U (2021) Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant Soil 461:219–244

    Article  CAS  Google Scholar 

  17. Balliu A, Sallaku G, Rewald B (2015) AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981

    Article  CAS  Google Scholar 

  18. Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z et al (2017) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:2516

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paterson E, Sim A, Davidson J, Daniell TJ (2016) Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralization. Plant Soil 408:243–254

    Article  CAS  Google Scholar 

  20. Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105:921–929

    Article  CAS  Google Scholar 

  21. Duc NH, Csintalan Z, Posta K (2018) Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem 132:297–307

    Article  CAS  PubMed  Google Scholar 

  22. Ait-El-Mokhtar M, Laouane RB, Anli M, Boutasknit A, Wahbi S, Meddich A (2019) Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic 253:429–438

    Article  Google Scholar 

  23. Garcés-Ruiz M, Calonne-Salmon M, Plouznikoff K, Misson C, Navarrete-Mier M, Cranenbrouck S, Declerck S (2017) Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system. Front Plant Sci 8:1471

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13:e0196408

  25. Alam A, Hariyanto B, Ullah H, Salin KR, Datta A (2021) Effects of silicon on growth, yield and fruit quality of cantaloupe under drought stress. Silicon 13:3153–3162

  26. Gou T, Su Y, Han R, Jia J, Zhu Y, Huo H, Liu H, Gong H (2022) Silicon delays salt stress-induced senescence by increasing cytokinin synthesis in tomato. Sci Hortic 293:110750

    Article  CAS  Google Scholar 

  27. Etesami H, Adl SM (2020) Can interaction between silicon and non–rhizobial bacteria benefit in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review Rhizosphere 15:100229

    Article  Google Scholar 

  28. Etesami H, Jeong BR, Glick BR (2021) Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front Plant Sci 12:699618

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ullah H, Luc PD, Gautam A, Datta A (2018) Growth, yield and silicon uptake of rice (Oryza sativa) as influenced by dose and timing of silicon application under water-deficit stress. Arch Agron Soil Sci 64:318–330

    Article  CAS  Google Scholar 

  30. Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R (2019) Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotech 9:73

  31. Das D, Ullah H, Tisarum R, Cha-um S, Datta A (2021) Morpho-physiological responses of tropical rice to potassium and silicon fertilization under water-deficit stress. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-021-00712-9

    Article  Google Scholar 

  32. Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: Current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  PubMed  Google Scholar 

  34. Dorairaj D, Ismail MR, Sinniah UR, Ban TK (2017) Influence of silicon on growth, yield and lodging resistance of MR219, a lowland rice of Malaysia. J Plant Nutr 40:1111–1124

    Article  CAS  Google Scholar 

  35. Shi Y, Wang Y, Flowers TJ, Gong H (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170:847–853

    Article  CAS  PubMed  Google Scholar 

  36. Meng Y, Yin Q, Yan Z, Wang Y, Niu J, Zhang J, Fan K (2020) Exogenous silicon enhanced salt resistance by maintaining K+/Na+ homeostasis and antioxidant performance in alfalfa leaves. Front Plant Sci 11:1183

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  38. Das D, Basar NU, Ullah H, Salin KR, Datta A (2021) Interactive effect of silicon and mycorrhizal inoculation on growth, yield and water productivity of rice under water-deficit stress. J Plant Nutr 44:2756–2769

    Article  CAS  Google Scholar 

  39. Sirisuntornlak N, Ghafoori S, Datta A, Arirob W (2019) Seed priming and soil incorporation with silicon influence growth and yield of maize under water-deficit stress. Arch Agron Soil Sci 65:197–207

    Article  CAS  Google Scholar 

  40. Das D, Ullah H, Himanshu SK, Tisarum R, Cha-um S, Datta A (2022) Arbuscular mycorrhizal fungi inoculation and phosphorus application improve growth, physiological traits, and grain yield of rice under alternate wetting and drying irrigation. J Plant Physiol 278:153829

    Article  CAS  PubMed  Google Scholar 

  41. Jones MM, Turner NC (1978) Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol 61:122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Camejo D, Rodríguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcón JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  CAS  PubMed  Google Scholar 

  43. Hayat S, Hasan SA, Fariduddin Q, Ahmad A (2008) Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress J Plant Interact 3:297–304

  44. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  45. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  46. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in root. New Phytol 84:489–500

    Article  Google Scholar 

  47. Hussain F, Bronson KF, Yadvinder S, Singh B, Peng S (2000) Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron J 92:875–879

    Article  CAS  Google Scholar 

  48. Cha-um S, Supaibulwatana K, Kirdmanee C (2006) Water relation, photosynthetic ability and growth of Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML 105) to salt stress by application of exogenous glycine betaine and choline. J Agron Crop Sci 192:25–36

    Article  CAS  Google Scholar 

  49. Tarantino TB, Barbosa IS, Lima DDC, Pereira MDG, Teixeira LS, Korn MGA (2017) Microwave-assisted digestion using diluted nitric acid for multi-element determination in rice by ICP OES and ICP-MS. Food Anal Methods 10:1007–1015

    Article  Google Scholar 

  50. Phukunkamkaew S, Tisarum R, Pipatsitee P, Samphumphuang T, Maksup S, Cha-um S (2021) Morpho-physiological responses of indica rice (Oryza sativa sub. indica) to aluminum toxicity at seedling stage. Environ Sci Pollut Res 28:29321–29331

    Article  CAS  Google Scholar 

  51. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  52. Han Y, Yin S, Huang L (2015) Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul 76:13–23

    Article  CAS  Google Scholar 

  53. Almeida DM, Oliveira MM, Saibo NJM (2017) Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ma Y, Dias MC, Freitas H (2020) Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci 11:591911

    Article  PubMed  PubMed Central  Google Scholar 

  55. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  56. Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S (2020) Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ Sci Pollut Res 27:36939–36953

    Article  CAS  Google Scholar 

  57. Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    Article  CAS  PubMed  Google Scholar 

  58. Battisti DD, Fowler MS, Jenkins SR, Skov MW, Bouma TJ, Neyland PJ, Griffin JN (2020) Multiple trait dimensions mediate stress gradient effects on plant biomass allocation, with implications for coastal ecosystem services. J Ecol 108:1227–1240

    Article  Google Scholar 

  59. Farouk S, Elhindi KM, Alotaibi MA (2020) Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol Environ Saf 206:111396

  60. Hoffmann J, Berni R, Hausman JF, Guerriero G (2020) A review on the beneficial role of silicon against salinity in non-accumulator crops: Tomato as a model. Biomolecules 10:1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dhiman P, Rajora N, Bhardwaj S, Sudhakaran SS, Kumar A, Raturi G, Chakraborty K, Gupta OP, Devanna B, Tripathi DK, Deshmukh R (2021) Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol Biochem 162:110–123

    Article  CAS  PubMed  Google Scholar 

  62. Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15:21803–21824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33:137–149

    Article  CAS  Google Scholar 

  64. Khatri U, Rathore MS (2022) Salt and osmotic stress-induced changes in physio-chemical responses, PSII photochemistry and chlorophyll a fluorescence in peanut. Plant Stress 3:100063

    Article  CAS  Google Scholar 

  65. Ahmad R, Hussain S, Anjum MA, Khalid MF, Saqib M, Zakir I, Hassan A, Fahad S, Ahmad S (2019) Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In: Hasanuzzaman M, Hakeem K., Nahar K, Alharby H (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_8

  66. Rastogi A, Yadav S, Hussain S, Kataria S, Hajihashemi S, Kumari P, Yang X, Brestic M (2021) Does silicon really matter for the photosynthetic machinery in plants…? Plant Physiol Biochem 169:40–48

    Article  CAS  PubMed  Google Scholar 

  67. El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127

    Article  PubMed  PubMed Central  Google Scholar 

  68. Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay RS (2019) Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5:e02952

    Article  PubMed  PubMed Central  Google Scholar 

  69. Etesami H, Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    Article  CAS  PubMed  Google Scholar 

  70. Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387

    Article  CAS  Google Scholar 

  71. Chun S, Chandrasekaran M (2018) Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol 9:2525

    Article  PubMed  PubMed Central  Google Scholar 

  72. Santander C, Sanhueza M, Olave J, Borie F, Valentine A, Cornejo P (2019) Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. J Soil Sci Plant Nutr 19:321–331

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Agricultural Technology Program (Phase-II), Bangladesh Agricultural Research Council, Bangladesh, and the Asian Institute of Technology, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. A.T.M. Tanjimul Islam acquired the data and performed the statistical analysis with guidance from Hayat Ullah, Sushil Kumar Himanshu, and Avishek Datta. A.T.M. Tanjimul Islam drafted the manuscript, and Hayat Ullah, Sushil Kumar Himanshu, Rujira Tisarum, Suriyan Cha-um, and Avishek Datta critically reviewed it for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Avishek Datta.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, A.T.M.T., Ullah, H., Himanshu, S.K. et al. The Interactive Effects of Silicon and Arbuscular Mycorrhizal Fungi on Growth, Physio-biochemical Traits, and Cob Yield of Baby Corn Plants under Salt Stress. Silicon 15, 4457–4471 (2023). https://doi.org/10.1007/s12633-023-02363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02363-0

Keywords

Navigation