Skip to main content
Log in

Specific Heat and its Related Parameters in Si Nanoparticles

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The specific heat for Si nanoparticles is calculated from the nanosize dependence of the Gruneisen parameter using the Gruneisen equation, which includes lattice thermal expansion, lattice volume, and bulk modulus. The results were comparable to the size dependent lattice volume under hydrostatic pressure. The reduction in specific heat from its bulk value to near zero for nanoparticles of critical size is comparably explained according to that of thermal expansion. The size dependent vibrational frequency derived from the nanosize dependent Gruneisen parameter, as well as the size dependent mean square atomic displacement and atomic spring constant, are used to evaluate the findings. Additionally, the nanosize dependent melting temperature and lattice anharmonicity are described using the Lennard–Jones equation principles. Lastly, whereas MSD decreases to zero at the critical size of solid nanoparticles, melting occurs at zero temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Coad Availability

Not applicable.

References

  1. Lennard-Jones JE (1926) Cohesion. Proceedings of the Physical Society, 1931. 43(5): p. 461

  2. Zhang Y, Cao JX, Xiao Y, Yan XH (2007) Phonon spectrum and specific heat of silicon nanowires. J Appl Phys 102(10):104303

  3. Xiong Sh, Qi W, Cheng Y, Huang B, Wang M, Li Y (2011) Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys Chem Chem Phys 13(22):10652–10660

    Article  CAS  PubMed  Google Scholar 

  4. Wang BX, Zhou LP, Peng XF (2006) Surface and size effects on the specific heat capacity of nanoparticles. Int J Thermophys 27(1):139–151

    Article  Google Scholar 

  5. KH. Alassafee A, Omar MS (2017) Debye–Einstein approximation approach to calculate the lattice specific heat and related parameters for a Si nanowire. J Taibah Univ Sci 11(6): 1226-1231

  6. Yao L, Qing-Lin S, Shan-Hong X (2005) Calculation of specific heat for aluminium thin films. Chin Phys Lett 22(9):2346

    Article  Google Scholar 

  7. Chávez E, Cuffe J, Alzina F, Torres CS (2012) Calculation of the specific heat in ultra-thin free-standing silicon membranes. in Journal of Physics: Conference Series 395(1)012105. IOP Publishing

  8. Grüneisen E (1926) The state of solids (in German), in “Handbuch der Physik”. 10, Springer Berlin. p. 1–52

  9. Omar MS (2016) Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles. Int J Thermophys 37(1):11

    Article  Google Scholar 

  10. Omar MS (2007) Lattice thermal expansion for normal tetrahedral compound semiconductors. Mater Res Bull 42(2):319–326

    Article  CAS  Google Scholar 

  11. Omar MS (2012) Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials. Mater Res Bull 47(11):3518–3522

    Article  CAS  Google Scholar 

  12. Abdullah BA, Omar MS, Jiang Q (2018) Size dependence of the bulk modulus of Si nanocrystals. Sādhanā 43(11):1–5

    Article  CAS  Google Scholar 

  13. Liang LH, Li B (2006) Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B 73(15)

  14. Yang C, Xiao M, Li W, Jiang Q (2006) Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Commun 139(4):148–152

    Article  CAS  Google Scholar 

  15. Abdullah BJ, Jiang Q, M.S. Omar MS (2016) Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. Bull Mater Sci 39(5): 1295-1302

  16. Rice MH (1965) Pressure-volume relations for the alkali metals from shock-wave measurements. J Phys Chem Solids 26(3):483–492

    Article  CAS  Google Scholar 

  17. Morelli DT, Heremans JP, Slack GA (2002) Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys Rev B 66(19):195304

  18. Kim DS, Smith HL, Niedziela JL, Li CW, Abernathy DL, Fultz B (2015) Phonon anharmonicity in silicon from 100 to 1500 K. Phys Rev B 91(1):014307

  19. Kagaya HM, Soma T (1994) Thermal properties of Si and Ge under pressure. Physica Status Solidi B (Basic Research);(Germany), 183(1).

  20. Kagaya HM, Shoji N, Soma T (1987) Specific heat and thermal expansion at high temperature for Si and Ge, phys. stat. sol. (b) 142, K13

  21. Gauster W (1971) Low-temperature Grüneisen parameters for silicon and aluminum. Phys Rev B 4(4):1288

    Article  Google Scholar 

  22. Kagaya HM, Soma T (1985) Temperature dependence of the linear thermal expansion coefficient for Si and Ge. physica status solidi (b) 129(1): p. K5-K8

  23. Soma T, Kudo K (1979) Thermal Expansion Coefficient at the High Temperature and Optical Mode Grüneisen Constants of Si and Ge. J Phys Soc Jpn 46(3):1023–1023

    Article  CAS  Google Scholar 

  24. Soma T (1977) Thermal expansion coefficient of Si and Ge. J Phys Soc Jpn 42(5):1491–1494

    Article  CAS  Google Scholar 

  25. Tolpadi S (1974) Volume and temperature variation of Gruneisen constant. J Phys F: Met Phys 4(12):2138

    Article  CAS  Google Scholar 

  26. Barron T (1957) Grüneisen parameters for the equation of state of solids. Ann Phys 1(1):77–90

    Article  CAS  Google Scholar 

  27. Pandey AK (2009) Der Pharma Chemica 1:78–99

  28. Omar MS, Taha HT (2009) Lattice dislocation in Si nanowires. Physica B 404(23–24):5203–5206

    Article  CAS  Google Scholar 

  29. Qader IN, Abdullah BJ, Omar MS (2020) Range determination of the influence of carrier concentration on lattice thermal conductivity for bulk Si and nanowires. Aksaray University Journal of Science and Engineering 4(1):30–42

    Article  CAS  Google Scholar 

  30. Burshtein AI (2008) Introduction to thermodynamics and kinetic theory of matter. John Wiley & Sons

  31. Lawson AC, Martinez B, Roberts JA, Bennett BI, Rechardson JW (2000) Melting of the light actinides. Philosophical Magazine B 80(1):53–59

    Article  CAS  Google Scholar 

  32. Ying ZC, Reitsma MG, Gates RS (2007) Direct measurement of cantilever spring constants and correction for cantilever irregularities using an instrumented indenter. Rev Sci Instrum 78(6):063708

  33. Strauch D, Pavone P, Nerb N, Karch K, Windl W, Dalba G, Fornasini P (1996) Atomic thermal vibrations in semiconductors: Ab initio calculations and EXAFS measurements. Physica B 219:436–438

    Article  Google Scholar 

  34. Schowalter M, Rosenauer A, Titantah JT, Lamoen D (2009) Computation and parametrization of the temperature dependence of Debye-Waller factors for group IV, III–V and II–VI semiconductors. Acta Crystallogr A 65(1):5–17

    Article  CAS  PubMed  Google Scholar 

  35. Lawson AC, Butt DP, Richardson JW, Li Ju (2007) Thermal expansion and atomic vibrations of zirconium carbide to 1600 K. Phil Mag 87(17):2507–2519

    Article  CAS  Google Scholar 

  36. Zhang Z, Li JC, Jiang Q (2000) Modelling for size-dependent and dimension-dependent melting of nanocrystals. J Phys D Appl Phys 33(20):2653

    Article  CAS  Google Scholar 

  37. Zhao YH, Lu K (1997) Grain-size dependence of thermal properties of nanocrystalline elemental selenium studied by x-ray diffraction. Phys Rev B 56(22):14330

    Article  CAS  Google Scholar 

  38. Sui M, Lu K (1995) Thermal expansion behavior of nanocrystalline Ni∙rP alloys of different grain sizes. Nanostruct Mater 6(5–8):651–654

    Article  Google Scholar 

  39. Lee JG, Mori H (2005) Solid solubility in isolated nanometer-sized alloy particles in the Sn-Pb system. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 34(1):227–230

    CAS  Google Scholar 

  40. Chang IL, Chang FR (2012) The atomistic study on the thermal expansion behaviors of nanowires. Comput Mater Sci 54:266–270

    Article  CAS  Google Scholar 

  41. Zhao H, Aluru NR (2009) Size and surface orientation effects on thermal expansion coefficient of one-dimensional silicon nanostructures. J Appl Phys 105(10)

  42. Lindemann FA (1910) The Calculations of Molecular Vibration Frequencies. Phys Z 11:609

    CAS  Google Scholar 

  43. Sing AK, Sharma PK (1968) Krebs’s model and Lindemann’s melting law. Canad J Phys 46:1677

    Article  Google Scholar 

  44. Reid JS, Smith T (1970) Improved Debye-Waller factors for some alkali halides. J Phys Chem Solids 31:2689

    Article  CAS  Google Scholar 

  45. Soma T, Matsuo H (1982) Lindeman's melting law and the effect of pressure on the melting point of Si and Ge. physica status solidi (b), 109(1) 387

  46. Shi FG (1994) Size dependent thermal vibrations and melting in nanocrystals. J Mater Res 9:1307–1313

    Article  CAS  Google Scholar 

  47. Jin ZHP, Gumbsch K, Lu EM,  Ma E (2001) Melting mechanisms at the limit of superheating. Phys Rev Lett 87(5):055703

Download references

Acknowledgements

Authors would like to acknowledge the financial support under grand no. (3/1/39-212022) from College of Science at the Salahaddin University-Erbil in Kurdistan Region, Iraq.

Funding

This work was fully funded by the College of Science in the University of Salahaddin-Erbil (Grant number3/1/39–212022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Mustafa Saeed Omar], [Botan Jawdat Abdullah], [Ayoub Sabir Karim] and [Sirwan Karim Jalal]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Botan Jawdat Abdullah.

Ethics declarations

Ethics Approval

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

All individual participants in the research provided their informed consent.

Consent to Publish (Ethics)

The Authors hereby consent to the publication of the Work in the “Silicon” journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, M.S., Abdullah, B.J., Karim, A.S. et al. Specific Heat and its Related Parameters in Si Nanoparticles. Silicon 15, 4049–4056 (2023). https://doi.org/10.1007/s12633-023-02316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02316-7

Keywords

Navigation