Skip to main content

Advertisement

Log in

Dielectric and Mechanical Properties of Silicone Rubber Composites Reinforced by Conductive Carbon Black and Neopentyl Glycol Diglycidyl Ether

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present investigation, dielectric, tensile strength, fracture toughness, and stress-strain properties of silicone rubber (SR) dispersed with carbon black (CB), and neopentyl glycol diglycidyl ether (NPGDE) (5 wt%, 10 wt%, and 12 wt%) were studied. Flake-like agglomerated morphology was confirmed from SEM (scanning electron microscope) studies as the CB@NPDGE filler concentration increases in the SR matrix. Surface area (354–358/cm3/g/A), pore size, and pore diameter (2.89 nm) remarkably increased for SR: CB@NPDGE polymer composites when compared with virgin SR. TGA spectra showed an increase in the decomposition temperature (600 °C) for SR: CB/NPDGE polymer composite when compared with virgin SR. A slight shift in the wavenumber of the functional groups resulted as the CB@NPDGE concentration increases in the SR polymer matrix. Optical absorbance shift towards the right side of the spectrum (redshift), broadened as CB@NPDGE concentration increased in SR polymer and optical band gap (Eg) decreases from 3.50 eV to 2.64 eV. SR:CB@NPDGE (10 wt% and 12 wt%) displayed improved dielectric properties having dielectric constant (1.68 × 103, 4.87 × 103), dielectric permittivity (101-103/104), and dielectric loss (< 1.1/0.05) when compared with virgin SR. Significant improvements in the stress-strain and tensile strength properties resulted for SR:CB@NPDGE (10 wt% and 12 wt%) polymer composites. Compressive strength and tensile strength were found to be ~ 12.909 MPa and ~ 136.2 MPa. The peak load is between 0.254 kN to 1.907kN. The elongation at break for SR:CB@NPDGE (12 wt%) polymer composite was found to be 97.14% with 14.07 kN/mm of stiffness. An increase in temperature leads to an increase in dielectric permittivity and ac conductivity for different wt% of CB@NPDGE in SR polymer composites. Further, tensile strength, and tensile strain to failure decreases monotonically with an increase in temperature (100 °C). The present research gives a pathway for the development of organic hybrid polymer-reinforced composite structures for piezoelectric, dielectric, and structural applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are enclosed in the manuscript and more data is available from the corresponding author upon reasonable request.

References

  1. Chen Y, Wang L, Wu Z, Luo J, Li B, Huang X, Xue H, Gao J (2019) Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors. Compos B Eng 176:107358

    Article  CAS  Google Scholar 

  2. Chen CY, Pu NW, Liu YM, Chen LH, Wu CH, Cheng TY, Lin MH, Ger MD, Gong YJ, Peng YY, Grubb PM (2018) Microwave absorption properties of holey graphene/silicone rubber composites. Compos B Eng 135:119–128

    Article  CAS  Google Scholar 

  3. Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira MS (2016) Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354:1257–1260

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Liu Z, Li M, Zhao Y, Shan G, Hu M, Zheng D (2019) Polydimethylsiloxane nanocomposite filled with 3D carbon nano sheet frameworks for tensile and compressive strain sensors. Compos B Eng 168:175–182

    Article  CAS  Google Scholar 

  5. Studebaker ML (1957) the chemistry of carbon black and reinforcement. Rubber Chem Technol 30(5):1400–1483

    Article  CAS  Google Scholar 

  6. Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C (2016) Fabrication of highly stretchable conductors based on 3D printed porous poly (dimethyl siloxane) and conductive carbon nanotubes/graphene network. ACS Appl Mater Interfaces 8:2187–2192

    Article  CAS  PubMed  Google Scholar 

  7. Pokharel P, Xiao D, Erogbogbo F, Keles O (2019) A hierarchical approach for creating electrically conductive network structure in polyurethane nanocomposites using a hybrid of graphene nano platelets, carbon black and multi-walled carbon nanotubes. Compos B Eng 161:169–182

    Article  CAS  Google Scholar 

  8. Kim Y, Zhu J, Yeom B, Di Prima M, Su X, Kim J-G, Yoo SJ, Uher C, Kotov NA (2013) Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500:59–63

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Li C, Zhao S, Cui J, Zhang G, Gao A, Yan Y (2019) Facile fabrication of highly conductive and robust three-dimensional graphene/silver nanowires bi continuous skeletons for electromagnetic interference shielding silicone rubber nanocomposites. Compos Part A-Appl S 119:101–110

    Article  CAS  Google Scholar 

  10. Lee J, Kim J, Shin Y, Jung I (2019) Ultra-robust wide-range pressure sensor with fast response based on polyurethane foam doubly coated with conformal silicone rubber and CNT/TPU nanocomposites islands. Compos B Eng 177:107364

    Article  CAS  Google Scholar 

  11. Guo X, Huang Y, Cai X, Liu C, Liu P (2016) Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric. Meas Sci Technol 27:045105

    Article  Google Scholar 

  12. Kumar V, Lee G, Choi J, Lee DJ (2020) Studies on composites based on HTV and RTV silicone rubber and carbon nanotubes for sensors and actuators. Polymer 190:122221

    Article  Google Scholar 

  13. Shang S, Gan L, Yuen MCW, Jiang SX, Luo NM (2014) Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Compos Part A: Appl Sci Manuf 66:135–141

    Article  CAS  Google Scholar 

  14. Zheng Y, Li Y, Dai K, Wang Y, Zheng G, Liu C, Shen C (2018) A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos Sci Technol 156:276–286

    Article  CAS  Google Scholar 

  15. Kumar V, Alam MN, Manikkavel A, Song M, Lee DJ, Park SS (2021) Silicone rubber composites reinforced by carbon nanofillers and their hybrids for various applications: A review. Polym 13(14):2322

    Article  CAS  Google Scholar 

  16. Kumar V, Lee DJ (2017) Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber. J Appl Polym Sci 134:44407. https://doi.org/10.1002/app.44407

    Article  CAS  Google Scholar 

  17. Dou Y, Gu H, Sun S, Yao W, Guan D (2022) Synthesis of a grape-like conductive carbon black/Ag hybrid as the conductive filler for soft silicone rubber. RSC Adv 12(2):1184–1193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Agee SK, Velram BM, Debes B (2018) Embedded large strain sensors with graphene-carbon black-silicone rubber composites. Sens Actuators A 282:206–214

    Article  Google Scholar 

  19. Huang Y, He X, Gao L, Wang Y, Liu C, Liu P (2017) Pressuresensitive carbon black/graphenenanoplatelets-silicone rubber hybrid conductive composites based on a three-dimensionalpolydopamine-modified polyurethane sponge. J Mater Sci: Mater Electron 28(13):9495–9504

    CAS  Google Scholar 

  20. Pan S, Jianan S, Yong Z (2020) Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. Compos Part B 191:107979

    Article  Google Scholar 

  21. Park SH, Hwang J, Park GS, Ha JH, Zhang M, Kim D, Yun DJ, Lee S, Lee SH (2019) Modeling the electrical resistivity of polymer composites with segregated structures. Nat Commun 10:2537–2548

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kumar V, Alam MN, Manikkavel A, Song M, Lee DJ, Park SS (2021) Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications: A Review. Polym (Basel) 13(14):2322

    Article  CAS  Google Scholar 

  23. Luheng W, Tianhuai D, Peng W (2009) Research on stress and electrical resistance of skin-sensing silicone rubber/carbon black nanocomposite during decompressive stress relaxation. Smart Mater Struct 18(6):065002

    Article  Google Scholar 

  24. Wang L, Ding T, Wang P (2009) Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon 47:3151–3157

    Article  CAS  Google Scholar 

  25. Yi XS (2004) Function principle of filled conductive polymer composites. National Defence Industry Press, Beijing

    Google Scholar 

  26. Park ES, Jang LW, Yoon JS (2005) Resistivity and thermal reproducibility of carbon black and metallic powder filled silicone rubber heaters. J Appl Polym Sci 95:1122–1128

    Article  CAS  Google Scholar 

  27. Xue P, Tao XM (2005) Morphological and electromechanical studies of fibres coated with electrically conductive polymer. J Appl Polym Sci 98:1844–1854

    Article  CAS  Google Scholar 

  28. Zhang XW, Pan Y, Zheng Q, Yi XS (2000) Time dependence of piezoresistance for the conductor-filled polymer composites. J Polym Sci Part B: Polym Phys 38(21):2739–2749

    Article  CAS  Google Scholar 

  29. Barba AA, Lamberti G, Amore M, Acierno D (2006) Carbon black/silicone rubber blends as absorbing materials to reduce Electro Magnetic Interferences (EMI). Polym Bull 57:587–593

    Article  CAS  Google Scholar 

  30. Neffati R, Brokken-Zijp JMC (2019) Electric conductivity in silicone-carbon black nanocomposites: percolation and variable range hopping on a fractal. Mater Res Express 6:1250–1258

    Article  Google Scholar 

  31. khalina M, Beheshty MH, Salimi A (2019) effect of reactive diluent on mechanical properties and microstructure of epoxy resins" Polym Bull 76(8):3905–3927

    Article  CAS  Google Scholar 

  32. Chrusciel JJ, Lesniak E (2015) Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog Polym Sci 41:67–121

    Article  CAS  Google Scholar 

  33. Lei H, Du G, Wu Z, Xi X, Dong Z (2014) Cross-linked soy-based wood adhesives for plywood. Intl J adhes adhes 50:199–203

    Article  CAS  Google Scholar 

  34. Li J, Luo J, Li X, Yi Z, Gao Q, Li J (2015) Soybean meal-based wood adhesive enhanced by ethylene glycol diglycidyl ether and diethylenetriamine. Indu Crops Prod 74:613–618

    Article  CAS  Google Scholar 

  35. Zieli´nska AJ, Thesis (2011) University of Twente

  36. Gao Y, Xue Y, Wang LZG, Chen Z, Shi Q, Sun F (2015) Proc Safety Environ Prot 94:322–328

  37. Pan Y, Zhang Y, Jiang J, Ding L (2014) Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structure–property relationship (QSPR) approach. J Loss Prev Process Indu 31:41–49

    Article  CAS  Google Scholar 

  38. Keller RC (1988) Peroxide curing of ethylene-propylene elastomers. Rubber Chem Technol 61(2):238–254

    Article  CAS  Google Scholar 

  39. Ogunniyi DS (1999) Peroxide vulcanisation of rubber. Prog Rubber Plast Technol 15(2):95–112

    CAS  Google Scholar 

  40. Naskar K (2004) Dynamically vulcanized PP/EPDM thermoplastics elastomers: Exploring novel routes for crosslinking with peroxides. Ph.D. Thesis, University of Twente

  41. Thitithammawong A, Nakason C, Sahakaro K, Noordermeer J (2007) Effect of different types of peroxides on rheological, mechanical, and morphological properties of thermoplastic vulcanizates based on natural rubber/polypropylene blends. Polym Test 26(4):537–546

    Article  CAS  Google Scholar 

  42. Das M, Shu CM (2016) A green approach towards adoption of chemical reaction model on 2, 5-dimethyl-2, 5-di-(tert-butylperoxy) hexane decomposition by differential iso conversional kinetic analysis. J Hazard Mater 301:222–232

    Article  CAS  PubMed  Google Scholar 

  43. Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24(1):81–142

    Article  CAS  Google Scholar 

  44. Oh JH, Oh KS, Kim CG, Hong CS (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos B Eng 35(1):49–56

    Article  Google Scholar 

  45. Koga T, Takeji H, Mikihito T, Kazuya A, Naoya A, Masao N, Daisuke Y, Satoshi K (2008) New insight into hierarchical structures of carbon black dispersed in polymer matrices: A combined small-angle scattering study. Macromolecules 41(2):453–464

    Article  CAS  Google Scholar 

  46. Luo J, Zhang J, Bai Y, Gao Q, Li J, Li L (2016) A new flexible soy-based adhesive enhanced with neopentyl glycol diglycidyl ether: Properties and application. Polym 8(9):346

    Article  Google Scholar 

  47. Simokaitiene J, Lazauskaite R, Grazulevicius JV (2002) Photopolymerization of neopentyl glycol diglycidylether and its compositions with 9-(2-oxiranylmethyl) carbazole. J Photochem Photobiol A: Chem 147(1):55–61

    Article  CAS  Google Scholar 

  48. Sundfors F, Lindfors T, Hofler L, Bereczki R, Gyurcsányi RE (2009) FTIR-ATR study of water uptake and diffusion through ion-selective membranes based on poly (acrylates) and silicone rubber. Anal Chem 81(14):5925–5934

    Article  CAS  PubMed  Google Scholar 

  49. Luo J, Zhang J, Bai Y, Gao Q, Li J, Li L (2016) A new flexible soy-based adhesive enhanced with neopentyl glycol diglycidyl ether: Properties and application. Polymers 8(9):346

    Article  PubMed Central  PubMed  Google Scholar 

  50. Park JJ, Lee JY, Hong YG (2020) Effects of vinylsilane-modified nanosilica particles on electrical and mechanical properties of silicone rubber nanocomposites. Polymers 197:122493

    Article  CAS  Google Scholar 

  51. Sim LC, Lee CK, Ramanan SR, Ismail H, Seetharamu KN (2006) Cure characteristics, mechanical and thermal properties of Al2O3 and ZnO reinforced silicone rubber. Polym Plast Technol Eng 45(3):301–307

    Article  CAS  Google Scholar 

  52. Mgbemena CO, Ibekwe NO, Sukumar R, Menon AR (2013) Characterization of kaolin intercalates of oleochemicals derived from rubber seed (Hevea brasiliensis) and tea seed (Camelia sinensis) oils. J King Saud Uni Sci 25(2):149–155

    Article  Google Scholar 

  53. Sanchez-Hidalgo R, Blanco C, Menendez R, Verdejo R, Lopez-Manchado MA (2019) Multifunctional silicone rubber nanocomposites by controlling the structure and morphology of graphene material. Polymers 11(3):449

    Article  PubMed Central  PubMed  Google Scholar 

  54. Virlogeux F, Bianchini D, Delor-Jestin F, Baba M, Lacoste J (2004) Evaluation of cross‐linking after accelerated photo‐ageing of silicone rubber. Polym Intl 53(2):163–168

    Article  CAS  Google Scholar 

  55. Wang Z, Zhao M, Scherson DA (1994) Channel flow cell for UV/visible spectroelectrochemistry. Anal Chem 66(24):4560–4563

    Article  CAS  Google Scholar 

  56. Zeng W, Gui D, Liu J, Hao J (2011) Synthesis and characterization of liquid silicone rubber for LED packaging. IEEE, 12th International Conference on Electronic Packaging Technology and High Density Packaging, pp 1–3

  57. Essawy HA, El-Sabbagh SH, Hussein AI, Tawfik ME (2018) Novel poly (vinyl chloride) based thermoplastic elastomers incorporating vinyl-functionalized silicone rubber. J Macromol Sci Part A 55(7):507–512

    Article  CAS  Google Scholar 

  58. Cho E, Chiu LL, Lee M, Naila D, Sadanand S, Waldman SD, Sussman D (2021) Characterization of mechanical and dielectric properties of silicone rubber. Polymers 13(11):18–31

    Article  Google Scholar 

  59. Zhao H, Xia YJ, Dang ZM, Zha JW, Hu GH (2013) Composition dependence of dielectric properties, elastic modulus, and electro activity in (carbon black-BaTiO3)/silicone rubber nanocomposites. J Appl Polym Sci 127(6):4440–4445

    Article  CAS  Google Scholar 

  60. Huang J, Wang F, Ma L, Zhang Z, Meng E, Zeng C, Guo D (2022) Vinyl silane-rich silicone filled by poly dimethyl siloxane encapsulated carbon black particles for dielectric elastomer actuator with enhanced out-of-plane actuations. Chem Eng J 428:131354

    Article  CAS  Google Scholar 

  61. Yang D, Huang S, Ruan M, Li S, Wu Y, Guo W, Zhang L (2018) Improved electromechanical properties of silicone dielectric elastomer composites by tuning molecular flexibility. Compos Sci Technol 155:160–168

    Article  CAS  Google Scholar 

  62. Carpi F, Rossi DD (2005) Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans Dielectr Electr Insul 12(4):835–843

    Article  CAS  Google Scholar 

  63. Wang L, Ding T, Wang P (2008) Effects of compression cycles and pre compression pressure on the repeatability of piezoresistivity for carbon black-filled silicone rubber composite. J Polym Sci Part B: Polym Phys 46(11):1050–1061

    Article  CAS  Google Scholar 

  64. Clet JAG, Liou NS, Weng CH, Lin YS (2022) A parametric study for tensile properties of silicone rubber specimen using the bowden-type silicone printer. Materials 15(5):1729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Gope PC, Singh VK (2011) Effect of filler addition and strain rate on the compressive strength of silica styrene-butadiene rubber‐filled epoxy composites. Polym Eng Sci 51(6):1130–1136

    Article  CAS  Google Scholar 

  66. Yu L, Skov AL (2015) Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide. Int J Smart Nano Mater 6(4):268–289

    Article  CAS  Google Scholar 

  67. Ziraki S, Zebarjad SM, Hadianfard MJ (2016) A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites. J Mech Behav Biomed Mater 57:289–296

    Article  CAS  PubMed  Google Scholar 

  68. Islam I, Sultana S, Kumer Ray S, Parvin Nur H, Hossain MT, Md. Ajmotgir W (2018) Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. C 4(1):15

  69. Shahi K, Boomurugan R, Velmurugan R (2021) Cold programming of epoxy-based shape memory polymer. Structures 29:2082–2093

    Article  Google Scholar 

  70. Zhang W, Deng Z, Yuan H, Luo S, Wen H, Liu T (2021) Preparation and properties of silicone rubber materials with foam/solid alternating multilayered structures. Polym J 53(5):619–631

    Article  Google Scholar 

  71. Kamarudin N, Razak JA, Norddin N, Mohamad N, Tee LK, Chew T, Mohd Saad N (2019), Hardness and water absorption properties of silicone rubber based composites for high voltage insulator applications. Symposium on Intelligent Manufacturing and Mechatronics, Springer, Singapore, pp 343–352

  72. Shivashankar H, Sangamesh R, Kulkarni SM (2019) Processing and investigation of mechanical characteristics on the polydimethylsiloxane/carbon black composites. Mater Res Express 6(10):105340

    Article  CAS  Google Scholar 

  73. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites preperation, properties and uses of a new class of materials. Mater Sci Eng: R: Reports 28:1–63

    Article  Google Scholar 

  74. Niihara K, Morena R, Hasselman DPH (1982) Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J Mat Sci Lett 1(1):13–16

    Article  CAS  Google Scholar 

  75. Meincke O, Kaempfer D, Weickmann H, Freidrick C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymers 45:739–748

    Article  CAS  Google Scholar 

  76. Libonati F, Vellwock AE, Ielmini F, Abliz D, Ziegmann G, Vergani L (2019) Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites. Sci Rep 9:3142–3155

    Article  PubMed Central  PubMed  Google Scholar 

  77. Modesti M, Lorenzetti A, Bon D, Besco S (2005) Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites. Polymer 46:10237–10245

    Article  CAS  Google Scholar 

  78. Incarnato L, Scarfato P, Russo GM, Di Maio L, Lannelli P, Acierno D (2003) Preparation and characterization of new melt compounded copolyamide nanocomposites. Polymers 44:4625–4634

    Article  CAS  Google Scholar 

  79. Raja V, Sharma AK, Rao VN (2004) Impedance spectroscopic and dielectric analysis of PMMA-CO-P4VPNO polymer films. Mater Lett 58(26):3242–3247

    Article  CAS  Google Scholar 

  80. Harun MH, Saion E, Kassim A, Hussain MY, Mustafa IS, Omer MA (2008) Temperature dependence of AC electrical conductivity of PVA-PPy-FeCl3 composite polymer films, Iskandar Shahrim Mustafa 2 and Muhd Ahmad Ali Omer 2. Malays Polym J 3(2):24–31

    Google Scholar 

  81. Chowdhury FU, Bhuiyan AH (2000) Dielectric properties of plasma-polymerized diphenyl thin films. Thin Solid Films 370(1–2):78–84

    Article  CAS  Google Scholar 

  82. Akram M, Javed A, Rizvi TZ (2005) Dielectric properties of industrial polymer composite materials. Turk J Phys 29(6):355–362

    CAS  Google Scholar 

  83. Min D, Li S, Hirai N, Ohki Y (2016) Dielectric spectroscopic analysis of degradation in ethylene-propylene-diene copolymer. IEEE Trans Dielectr Electr Insul 23(6):3620–3630

    Article  CAS  Google Scholar 

  84. Shi XQ, Wang ZP, Pang HL, Zhang XR (2002) Investigation of effect of temperature and strain rate on mechanical properties of under fill material by use of micro tensile specimens. Polym Test 21(6):725–733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to the centre for Advanced Materials Technology (CAMT), MSRIT, Karnataka, Bangalore, centre for nano and material science (CNMS), Jain University, Bangalore, India for the basic characterization of the polymer composites. Department of mechanical engineering Reva University for stress-strain, tensile strength and fracture toughness measurements.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Vinayak Adimule and Dr. Gangadhar B conceived the ideas, and interpretation of the spectral data, and drafted the manuscript and Dr. Basappa C Yallur and Dr. Sheetal Batakurki were involved in dielectric and stress-strain measurements. Prof. Rayappa Mahale and Dr. Santosh Nandi were involved in the synthesis of carbon black from waste tyre powders. Dr. Vinayak Adimule and Dr. Shashanka Rajendrachari took the revision of the manuscript.

Corresponding authors

Correspondence to Vinayak Adimule or Shashanka Rajendrachari.

Ethics declarations

Ethics Approval

All the authors declare that the present research work does not involve any human and/or animals.

Consent to Participate

All the authors declare that the present study does not involve any human objects or organs or tissues in any form.

Consent for Publication

All the authors declare that the data deposited with the manuscript can be published freely online and will be used for educational publications intended for professionals.

Conflict of Interest

All the authors declare that they do not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.42 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimule, V., Rajendrachari, S., Mahale, R. et al. Dielectric and Mechanical Properties of Silicone Rubber Composites Reinforced by Conductive Carbon Black and Neopentyl Glycol Diglycidyl Ether. Silicon 15, 2811–2828 (2023). https://doi.org/10.1007/s12633-022-02210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02210-8

Keywords

Navigation