Skip to main content
Log in

Partially Extended Germanium Source DG-TFET: Design, Analysis, and Optimization for Enhanced Digital and Analog/RF Parameters

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Tunnel field-effect transistors have demonstrated a predominant performance in the field of semiconductors. However, low drive current and ambipolarity are major challenges for TFETs. To overcome these challenges, a Partially Extended Germaniumn source DG-TFET (PEGeDG-TFET) is proposed. This PEGeDG-TFET structure has a partially extended Ge source under the gate below the Si-epitaxial layer to improve vertical tunneling, using the overlap area concept and pocket layer to enhance lateral tunneling along with suppressed Short-Channel effect. After scaling the transistor dimension up to 40%, the proposed device performance is not only retained but greatly improved by device engineering techniques. Further, a complete metal gate contact is deployed over the Si-epi layer length and overlapping the source metal-contact over oxide width touching Si-epi layer width. The proposed device study reveals the impact of source length, dielectric material, and oxide thickness variation. It also comprehends the impact of Ge molar fraction on transfer characteristics, transconductance, RF parameters (ft,GBP, etc). Further, the Linearity analysis in Si1−xGex source in PEDG-TFET with x varying from 0 to 1.The proposed device claims ION to be 3.2 mA/um, IOFF = 3.21 × 10− 17 A/um with an ION / IOFF ratio of 9.6 × 1013 along with enhanced transconductance, cut-off frequency, and gain-bandwidth product. The potential of the proposed device for digital logic applications are examined for the worst case (equal source and drain doping), and it is demonstrated in this work along with Analog/RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All the data taken from another resource has been given the corresponding reference. The data, for which reference is not provided, is the original data.

References

  1. Ratnesh RK, Goel A, Kaushik G, Garg H, Singh CM, Prasad B (2021) . Mater Sci Semicond Process 134:106002. https://doi.org/10.1016/j.mssp.2021.106002

    Article  CAS  Google Scholar 

  2. Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) . Proc IEEE 91(2):305. https://doi.org/10.1109/JPROC.2002.808156

    Article  CAS  Google Scholar 

  3. Taur Y, Buchanan D, Chen W, Frank D, Ismail K, Lo SH, Sai-Halasz G, Viswanathan R, Wann HJ, Wind S, Wong HS (1997) . Proc IEEE 85(4):486. https://doi.org/10.1109/5.573737

    Article  Google Scholar 

  4. Raj B, Saxena A, Dasgupta S (2011) . IEEE Circ Syst Mag 11 (3):38. https://doi.org/10.1109/MCAS.2011.942068

    Article  Google Scholar 

  5. Bala S, Khosla M (2018) . Superlattices Microstruct 124:160. https://doi.org/10.1016/j.spmi.2018.10.007

    Article  CAS  Google Scholar 

  6. Thoti N, Lakshmi B (2017) . Mater Sci Semicond Process 71:304. https://doi.org/10.1016/j.mssp.2017.08.014

    Article  CAS  Google Scholar 

  7. Kao KH, Verhulst AS, Vandenberghe WG, Soree B, Groeseneken G, De Meyer K (2012) . IEEE Trans Electron Devices 59(2):292. https://doi.org/10.1109/TED.2011.2175228

    Article  CAS  Google Scholar 

  8. Bhuwalka KK, Schulze J, Eisele I (2005) IEEE Trans Electron Devices 52(5):909. https://doi.org/10.1109/TED.2005.846318

    Article  CAS  Google Scholar 

  9. Raad BR, Nigam K, Sharma D, Kondekar PN (2016) . Superlattices Microstruct 94:138. https://doi.org/10.1016/j.spmi.2016.04.016

    Article  CAS  Google Scholar 

  10. Acharya A, Solanki AB, Glass S, Zhao QT, Anand B (2019) . IEEE Trans Electron Devices 66(9):4081. https://doi.org/10.1109/TED.2019.2927001

    Article  CAS  Google Scholar 

  11. Paras N, Chauhan SS (2019) . Microelectron Eng 216:111043. https://doi.org/10.1016/j.mee.2019.111043

    Article  CAS  Google Scholar 

  12. Paras N, Chauhan SS (2019) Microelectron Eng 217. https://doi.org/10.1016/j.mee.2019.111103

  13. Kr Singh O, Kaur B (2021) .. In: 2021 IEEE international conference on technology, research, and innovation for betterment of society (TRIBES). https://doi.org/10.1109/TRIBES52498.2021.9751635, pp 1–6

  14. Jhaveri R, Nagavarapu V, Woo JCS (2011) . IEEE Trans Electron Devices 58(1):80. https://doi.org/10.1109/TED.2010.2089525

    Article  CAS  Google Scholar 

  15. Kim JH, Kim S, Park BG (2019) . IEEE Trans Electron Devices 66(4):1656. https://doi.org/10.1109/TED.2019.2899206

    Article  CAS  Google Scholar 

  16. Kujur Kanak SS (2022) Rasheed Gadarapulla, Silicon. https://doi.org/10.1007/s12633-022-01737-0

  17. Alassery Fawaz SS, Asif Irshad K (2022) Silicon. https://doi.org/10.1007/s12633-021-01647-7

  18. Loan ASA, Rafat M (2018) . IEEE Trans Electron Devices 65(2):763. https://doi.org/10.1109/TED.2017.2783764

    Article  Google Scholar 

  19. Kim SW, Kim JH, Member S, Liu T.j.K., Choi WY, Park B.g., An A (2016) L.s. Fet 63(4):1774

    CAS  Google Scholar 

  20. Chen S, Wang S, Liu H, Li W, Wang Q, Wang X (2017) . IEEE Trans Electron Devices 64(3):1343. https://doi.org/10.1109/TED.2017.2647809

    Article  CAS  Google Scholar 

  21. Chen S, Liu H, Wang S, Li W, Wang X, Zhao L (2018) Analog / RF performance of T-shape gate dual-source tunnel field-effect transistor. Nanoscale Res Lett 13:321. https://doi.org/10.1186/s11671-018-2723-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sharma S, Basu R, Kaur B (2022) . IEEE Trans Electron Devices 69(5):2692. https://doi.org/10.1109/TED.2022.3156895

    Article  CAS  Google Scholar 

  23. Vadizadeh M (2021) . IEEE Trans Electron Devices 68(4):1986. https://doi.org/10.1109/TED.2021.3056632

    Article  CAS  Google Scholar 

  24. Wadhwa G, Raj B (2018) . IEEE Sensors J 18(15):6070. https://doi.org/10.1109/JSEN.2018.2846409

    Article  CAS  Google Scholar 

  25. Joshi T, Singh Y, Singh B (2020) . IEEE Trans Electron Devices 67(4):1873. https://doi.org/10.1109/TED.2020.2973353

    Article  CAS  Google Scholar 

  26. Sandeep Kumar BS, Singh Y (2021) . Silicon 6(13):1805. https://doi.org/10.1007/S12633-020-00565-4

    Article  Google Scholar 

  27. Chawla T, Khosla M, Raj B (2022) . Mater Sci Semicond Process 145:106643. https://doi.org/10.1016/j.mssp.2022.106643

    Article  CAS  Google Scholar 

  28. Pasupathy GLR, Manivannan S (2021) . Silicon 14:1887. https://doi.org/10.1007/s12633-021-01018-2

    Google Scholar 

  29. Venkatesh M, Priya GL, Balamurugan NB (2021) . Silicon 13(3):911. https://doi.org/10.1007/s12633-020-00856-w

    Article  CAS  Google Scholar 

  30. Banerjee S, Garg S, Saurabh S (2018) . IEEE Electron Device Lett 39(5):773. https://doi.org/10.1109/LED.2018.2819205

    Article  CAS  Google Scholar 

  31. Garg S, Saurabh S (2020) . IEEE J Exploratory Solid-State Computat Devices Circ 6(2):146. https://doi.org/10.1109/JXCDC.2020.3038073

    Article  Google Scholar 

  32. Pillarisetty R, Kung B, Corcoran S, Dewey G, Kavalieros J, Kennel H, Kotlyar R, Le V, Lionberger D, Metz M, Mukherjee N, Nah J (2010) Technical Digest - International Electron Devices Meeting IEDM. https://doi.org/10.1109/IEDM.2010.5703312

  33. Tezuka T, haru Sugiyama N, Takagi S (2001) . Appl Phys Lett 79:1798

    Article  CAS  Google Scholar 

  34. Liow TY, Tan KM, Yeo YC, Agarwal A, Du A, Tung CH, Balasubramanian N (2005) . Appl Phys Lett 87:262104

    Article  Google Scholar 

  35. Kao KH, Verhulst AS, Vandenberghe WG, De Meyer K (2013) . IEEE Trans Electron Devices 60(1):6. https://doi.org/10.1109/TED.2012.2227115

    Article  CAS  Google Scholar 

  36. Kao KH, Verhulst AS, Vandenberghe WG, Soree B, Magnus W, Leonelli D, Groeseneken G, De Meyer K (2012) . IEEE Trans Electron Devices 59(8):2070. https://doi.org/10.1109/TED.2012.2200489

    Article  CAS  Google Scholar 

  37. Chang HY, Adams B, Chien PY, Li J, Woo JCS (2013) . IEEE Trans Electron Devices 60(1):92. https://doi.org/10.1109/TED.2012.2228006

    Article  CAS  Google Scholar 

  38. Zhang Y (2016) U.S Patent 9252250 B2

  39. Ye H, Yu J (2014) . Sci Technol Adv Mater 15(2):024601. https://doi.org/10.1088/1468-6996/15/2/024601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang PY, Tsui BY (2015) . IEEE Electron Device Lett 36(12):1264. https://doi.org/10.1109/LED.2015.2487563

    Article  CAS  Google Scholar 

  41. Johnson RW, Hultqvist A, Bent SF (2014) . Mater Today 17(5):236. https://doi.org/10.1016/j.mattod.2014.04.026

    Article  CAS  Google Scholar 

  42. Widiez J, Lolivier J, Vinet M, Poiroux T, Previtali B, Dauge F, Mouis M, Deleonibus S (2005) . IEEE Trans Electron Devices 52(8):1772. https://doi.org/10.1109/TED.2005.851824

    Article  Google Scholar 

  43. (Silvaco Inc) https://silvaco.com

  44. Shockley W, Read WT (1952) . Phys Rev 87:835. https://doi.org/10.1103/PhysRev.87.835

    Article  CAS  Google Scholar 

  45. Wang PF, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D, Hansch W (2004) . Solid-state Electron 48:2281

    Article  CAS  Google Scholar 

  46. Dharavath Krishna VA (2020) . Silicon 12(6):1391. https://doi.org/10.1007/s12633-019-00232-3

    Article  Google Scholar 

  47. Nibha P, Singh S (2022) . Silicon 14:7017. https://doi.org/10.1007/s12633-021-01476-8

    Article  Google Scholar 

  48. Raj A, Singh S, Priyadarshani KN, Arya R, Naugarhiya A (2021) . Silicon 13(8):2589. https://doi.org/10.1007/s12633-020-00603-1

    Article  CAS  Google Scholar 

  49. Kavi KK, Tripathi S (2022) Silicon, pp 1876–9918. https://doi.org/10.1007/s12633-022-01765-w

  50. Saurabh Mookerjea SD, Krishnan R, Narayanan V (2009) . IEEE Electron Device Lett 30:1102. https://doi.org/10.1109/LED.2009.2028907

    Article  Google Scholar 

  51. Suruchi Sharma B.K, Basu R (2021) Silicon. https://doi.org/10.1007/s12633-021-01514-5

Download references

Acknowledgements

This work was supported by the SMDP-C2SD under the reference letter no. 9(1)2014-MDD (NIT Delhi, Delhi, India).

Funding

The authors did not receive any financial support from any agency/organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Omendra Kr Singh: Writing original draft preparation, Writing - Reviewing and Editing, Conceptualization, Methodology, and Validation; Vaithiyanathan Dhandapani: Supervision, Validation, Writing - Reviewing and Editing; Baljit Kaur: Supervision, Validation, Writing - Reviewing and Editing.

Corresponding author

Correspondence to Omendra Kr Singh.

Ethics declarations

Ethics approval and consent to participate

The authors declare that they have consent for participation.

Consent for Publication

The authors have consent for the publication of this manuscript.

Competing interests

The authors declare no competing interests.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, O.K., Dhandapani, V. & Kaur, B. Partially Extended Germanium Source DG-TFET: Design, Analysis, and Optimization for Enhanced Digital and Analog/RF Parameters. Silicon 15, 1475–1490 (2023). https://doi.org/10.1007/s12633-022-02112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02112-9

Keywords

Navigation