Skip to main content
Log in

Double Gate Double-Channel AlGaN/GaN MOS HEMT and its Applications to LNA with Sub-1 dB Noise Figure

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The manuscript proposes a novel double gate double-channel AlGaN/GaN MOS high electron mobility transistor (DG-DC-MOS-HEMT) for the low noise amplifier (LNA) applications. Double-channel structure importance on high-frequency noise and analog/RF performance of AlGaN/GaN HEMT have been explored in this work through TCAD device simulations. The existence of lower channels improves the transconductance (gm), unity gain cut-off frequency (fT), and minimum noise figure (NFmin) of DG-DC-MOS-HEMT compared to DG-MOS-HEMT. The DG-DC-MOS-HEMT with channel length of 220 nm exhibits gm of 0.85mS/um, fT of 137GHz, and NFmin of 0.21 dB. For the first time in this paper, an LNA using DG-DC-MOS-HEMT has been designed for X-Band radar applications. An s2p model is developed for DG-DC-MOS-HEMT and the models are incorporated into the ADS simulator to utilize the proposed device in circuit simulations. Comparing the results of LNA by DG-DC-MOS-HEMT with LNA by DG-MOS-HEMT at f = 10GHz, an increase of 56% and 36%, respectively, in noise figure (NF) and forward voltage gain (S21), was found. This paper gives an opportunity to attain high-performance LNA with the proposed DG-DC-MOS-HEMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Jena K, Swain R, Lenka TR (2015) Impact of oxide thickness on gate capacitance–modelling and comparative analysis of GaN-based MOSHEMTs. Pramana 85(6):1221–1232

    Article  CAS  Google Scholar 

  2. Takagi S-I, Toriumi A (1995) Quantitative understanding of inversion-layer capacitance in Si MOSFET’s. IEEE Trans Electron Devices 42(12):2125–2130

    Article  Google Scholar 

  3. Yigletu FM et al (2013) Compact charge-based physical models for current and capacitances in AlGaN/GaN HEMTs. IEEE Trans Electron Devices 60(11):3746–3752

    Article  CAS  Google Scholar 

  4. Mukherjee H, Kar M, Kundu A (2022) Enhancement in analog/RF and power performance of underlapped dual-gate GaN-based MOSHEMTs with quaternary InAlGaN barrier of varying widths. J Electron Mater 51(2):692–703

    Article  CAS  Google Scholar 

  5. Khan AN, Jena KA, Routray S, Chatterjee G (2022) RF/analog and linearity performance evaluation of lattice-matched ultra-thin AlGaN/GaN gate recessed MOSHEMT with silicon substrate. Silicon. https://doi.org/10.1007/s12633-021-01605-3

  6. Zine-eddine T, Zahra H, Zitouni M (2019) Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications. J Sci Adv Mater Devices 4(1):180–187

    Article  Google Scholar 

  7. Hu X et al (2000) Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate. Electron Lett 36(8):753–754

    Article  CAS  Google Scholar 

  8. Wang R et al (2006) Enhancement-mode $ hboxSi_3hboxN_4hbox/AlGaN/GaN $ MISHFETs. IEEE Electron Device Lett 27(10):793–795

  9. Kumar V et al (2003) High transconductance enhancement-mode AlGaN/GaN HEMTs on SiC substrate. Electron Lett 39(24):1758–1760

    Article  CAS  Google Scholar 

  10. Huang W, et al. (2008) Enhancement-mode Gan hybrid Mos-hemts with r on, sp of 20 mω-cm 2. 2008 20th International Symposium on Power Semiconductor Devices and IC’s. IEEE

  11. Lin C-W, et al. (2009) Device performance of AlGaN/GaN MOS-HEMTs using La 2 O 3 high-k oxide gate insulator. 2009 Proceedings of the European Solid State Device Research Conference. IEEE

  12. Lee C-S et al (2014) Composite HfO2/Al2O3-dielectric AlGaAs/InGaAs MOS-HEMTs by using RF sputtering/ozone water oxidation. Superlattice Microst 72:194–203

    Article  CAS  Google Scholar 

  13. Swain R, Jena K, Lenka TR (2016) Oxide interfacial charge engineering towards normally-off AlN/GaN MOSHEMT. Mater Sci Semicond Process 53:66–71

    Article  CAS  Google Scholar 

  14. Hu C-C et al (2011) AlGaN/GaN Metal–Oxide–Semiconductor High-Electron Mobility Transistor With Liquid-Phase-Deposited Barium-Doped $\hbox {TiO} _ {2} $ as a Gate Dielectric. IEEE Trans Electron Devices 59(1):121–127

  15. Sandeep V et al (2020) Impact of AlInN Back-barrier over AlGaN/GaN MOS-HEMT with HfO2 dielectric using cubic spline interpolation technique. IEEE Trans Electron Devices 67(9):3558–3563

    Article  CAS  Google Scholar 

  16. Dasgupta S et al (2010) Ultralow nonalloyed ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by in (Ga) N regrowth. Appl Phys Lett 96(14):143504

    Article  Google Scholar 

  17. Zhang XW, Jia KJ, Wang YG, Feng ZH, Zhao ZP (2013) AlNGaN HEMT T-gate optimal design. In: Applied mechanics and materials, vol 347. Trans Tech Publications Ltd., pp 1790–1792

  18. (2015) ATLAS user manual. Silvaco Int., Santa Clara

  19. Sandeep V, Charles Pravin J (2021) Influence of graded AlGaN sub-channel over the DC and breakdown characteristics of a T-gated AlGaN/GaN/AlInN MOS-HEMT. Superlattice Microst 156:106954

    Article  CAS  Google Scholar 

  20. Vadizadeh M (2021) Digital performance assessment of the dual-material gate GaAs/InAs/Ge junctionless TFET. IEEE Trans Electron Devices 68(4):1986–1991

    Article  CAS  Google Scholar 

  21. Vadizadeh M, Fallahnejad M (2021) Impact of effective mass changes with mole-fraction on the analog/radio frequency benchmarking parameters in junctionless Ga x In 1− x As/GaAs field-effect transistor. Int J Mod Phys B 35(23):2150238

    Article  CAS  Google Scholar 

  22. Vadizadeh M (2018) Characteristics of GaAs/GaSb tunnel field-effect transistors without doping junctions: numerical studies. J Comput Electron 17(2):745–755

    Article  CAS  Google Scholar 

  23. Ambacher O et al (2002) Pyroelectric properties of Al (in) GaN/GaN hetero-and quantum well structures. J Phys Condens Matter 14(13):3399

    Article  CAS  Google Scholar 

  24. Ambacher O et al (1999) Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. J Appl Phys 85(6):3222–3233

    Article  CAS  Google Scholar 

  25. Panda DK et al (2020) Single and double-gate based AlGaN/GaN MOS-HEMTs for the design of low-noise amplifiers: a comparative study. IET Circ Devices Syst 14(7):1018–1025

    Article  Google Scholar 

  26. Bahadori-Jahromi F, Zareian-Jahromi SJ (2018) Highly linear high-frequency low-noise amplifier design at ISM band. Wirel Pers Commun 103(3):2679–2692

    Article  Google Scholar 

  27. Pucel RA, Haus HA, Statz H (1975) Signal and noise properties of gallium arsenide microwave field-effect transistors. In: Advances in electronics and electron physics, vol 38. Academic Press, pp 195–265

  28. Fallahnejad M et al (2020) Impact of channel doping engineering on the high-frequency noise performance of junctionless In0. 3Ga0. 7As/GaAs FET: a numerical simulation study. Phys E: Low-Dimensional Syst Nanostruct 115:113715

    Article  CAS  Google Scholar 

  29. Bajelan F et al (2017) Performance improvement of junctionless field effect transistors using p-GaAs/AlGaAs heterostructure. Superlattice Microst 110:305–312

    Article  CAS  Google Scholar 

  30. Dambrine G et al (1999) High-frequency four noise parameters of silicon-on-insulator-based technology MOSFET for the design of low-noise RF integrated circuits. IEEE Trans Electron Devices 46(8):1733–1741

    Article  CAS  Google Scholar 

  31. Chen Y, Ruimin X (2014) Analysis of the RF and noise performance of junctionless MOSFETs using Monte Carlo simulation. Int J Numer Model Electron Netw Devices Fields 27(5–6):822–833

    Article  Google Scholar 

  32. Pospieszalski MW (1989) Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence. IEEE Trans Microw Theory Tech 37(9):1340–1350

    Article  Google Scholar 

  33. Dutta G, Kanaga S, DasGupta N, DasGupta A (2019) AlGaN/GaN HEMT fabrication and challenges. In: Handbook for III-V high electron mobility transistor technologies. CRC Press, pp 133–171

  34. Quay R (2008) Gallium nitride electronics. Springer Science & Business Media

  35. Arthur G, Martin B (1996) Investigation of photoresist-specific optical proximity effect. Microelectron Eng 30(1–4):133–136

    Article  CAS  Google Scholar 

  36. Chan SH, Wong AK, Lam EY (2008) Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography. Opt Express 16(19):14746–14760

    Article  Google Scholar 

  37. Kuo W-ML et al (2006) A low-power, $ X $-band SiGe HBT low-noise amplifier for near-space radar applications. IEEE Microw Wirel Components Lett 16(9):520–522

  38. Gonzalez G (1997) Microwave transistor amplifiers: analysis and design. Prentice Hall, New Jersey

  39. Liao SY (1987) Microwave circuit analysis and amplifier design. Prentice-Hall, Inc.

  40. Colangeli S et al (2013) GaN-based robust low-noise amplifiers. IEEE Trans Electron Devices 60(10):3238–3248

    Article  CAS  Google Scholar 

  41. Çaışkan C et al (2018) Sub-1-dB and wideband SiGe BiCMOS low-noise amplifiers for X -band applications. IEEE Trans Circ Syst I: Regular Papers 66(4):1419–1430

    Google Scholar 

  42. Liu L, Alt AR, Benedickter H, Bolognesi CR (2012) InP-HEMT X-band low-noise amplifier with ultralow 0.6-mW power consumption. IEEE Electron Device Lett 33(2):209–211

    Article  Google Scholar 

  43. Andrei C et al. (2012) Highly linear X-band GaN-based low-noise amplifier. 2012 International Symposium on Signals, Systems, and Electronics (ISSSE). IEEE

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mahdi Vadizadeh.

Ethics declarations

Conflict of Interest

Not applicable.

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadizadeh, M., Fallahnejad, M., Shaveisi, M. et al. Double Gate Double-Channel AlGaN/GaN MOS HEMT and its Applications to LNA with Sub-1 dB Noise Figure. Silicon 15, 1093–1103 (2023). https://doi.org/10.1007/s12633-022-02083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02083-x

Keywords

Navigation