Skip to main content
Log in

Effect of Dual Metal on RF/Analog and Linearity Performance of Double Gate Ferroelectric Si-doped-HfOGaN MOSHEMT

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, the authors have demonstrated and differentiated between various analog/RF and linearity performances of a lattice-matched normally off dual-gate ferroelectric metal oxide semiconductor-high electron mobility transistor (DG Fe-MOSHEMT) and dual gate dual metal ferroelectric metal oxide semiconductor-high electron mobility transistor (DGDM Fe-MOSHEMT) with physical modeling based Technology Computer-Aided Design (TCAD) simulation. The strong polarization effects of ferroelectric material shift the threshold voltage of the proposed device towards positive side and hence operates the device in normally-off mode. The insertion of dual metal inhibits the conventional trapping effect in MOSHEMT with improved carrier mobility, reducing channel resistance. The DC/ RF performance of the DGDM Fe-MOSHEMT, such as drain current (Id), transconductance (gm) improves compared to the DG Fe-MOSHEMT device. The linearity parameters of dual gate structure with double metal are analyzed, giving better linearity performance such as VIP2, VIP3, input third-order intercept point (IIP3), and third-order intermodulation (IMD3) with high cutoff frequencies compared to conventional structures. The DGDM Fe-MOSHEMT device shows better RF performance, useful for high-frequency applications. The resulting high electric field shows tremendous potential to operate the device in a high potential regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data available within the manuscript.

References

  1. Chow TP et al (2000) SiC and GaN bipolar power devices. Solid-State Electron 44(2):277–301

    Article  CAS  Google Scholar 

  2. Chen KJ et al (2017) GaN-on-Si power technology: Devices and applications. IEEE Trans Electron Devices 64(3):779–795. https://doi.org/10.1109/TED.2017.2657579

  3. Ishida M, Ueda T, Tanaka T, Ueda D (2013) GaN on Si technologies for power switching devices. IEEE Trans Electron Devices 60(10):3053–3059. https://doi.org/10.1109/TED.2013.2268577

  4. Srivastava P, Das J, Visalli D, Hove MV, Malinowski PE, Marcon D, Lenci S, Geens K, Cheng K, Leys M et al (2011) Record breakdown voltage (2200V) of GaN DHFETs on Si with 2-µm buffffer thickness by local substrate removal. IEEE Electron Device Lett 32:30–32

    Article  CAS  Google Scholar 

  5. Wu TF, Saxler A, Moore M, Smith RP, Sheppard S, Chavarkar PM, Wisleder T, Mishra UK, Parikh P (2004) IEEE Electron Devices Lett 25:117

    Article  CAS  Google Scholar 

  6. Chung JW, Hoke WE, Chumbes EM, Palacios T (2010) IEEE Electron Devices Lett 31:195

    Article  CAS  Google Scholar 

  7. Selvaraj SL, Watanabe A, Wakejima A, Egawa T (2012) 1.4 kV breakdown voltage for MOCVD grown AlGaN/GaN HEMTs on Si substrate. In: Proc 70th Annu Device Res Conf (DRC), pp 53–54

  8. Ibbetson JP, Fini PT, Ness KD, DenBaars SP, Speck JS, Mishra UK (2000) Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure fifield effect transistors. Appl Phys Lett 77(2):250–252. https://doi.org/10.1063/1.126940

    Article  CAS  Google Scholar 

  9. Chiou YL, Lee CT (2011) Band alignment and performance improvement mechanisms of chlorine-treated ZnO-gate AlGaN/GaN metal–oxide–semiconductor high-electron mobility transistors. IEEE Trans Electron Devices 58(11):3869–3875

    Article  CAS  Google Scholar 

  10. Roccaforte F, Greco G, Fiorenza P, Iucolano F (2019) An overview of normally-Offff GaN-based high electron mobility transistors. Materials 12:1599

    Article  CAS  Google Scholar 

  11. Cai Y, Zhou Y, Chen KJ, Lau KM (2005) High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett 26(7):435–437

    Article  CAS  Google Scholar 

  12. Feng ZH, Zhou R, Xie SY, Yin JY et al (2010) 18-GHz 3.65-W/mm enhancement-mode AlGaN/GaN HFET using fluorine plasma ion implantation. IEEE Electron Device Lett 31:1386–1388

    Article  Google Scholar 

  13. Huang X, Liu Z, Li Q (2014) Evaluation and application of 600 V GaN HEMT in cascode structure. IEEE Trans Power Electron 29:2453–2461

    Article  Google Scholar 

  14. Lanford WB, Tanaka T, Otoki Y, Adesida I (2005) Recessed-gate enhancement-mode GaN HEMT with high threshold voltage. Electron Lett 41(7):449–450

    Article  CAS  Google Scholar 

  15. Oka T (2008) AlGaN/GaN recessed MIS-Gate HFET with high-threshold-voltage normally-off operation for power electronics applications. IEEE Electron Device Lett 29:668–670

    Article  CAS  Google Scholar 

  16. Kim DS, .Im KS, Kang HS, Kim KW, Bae SB, Mun JK, Nam ES, Lee JH (2012) Normally-off AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor with recessed gate and p-GaN back-barrier. Jpn J Appl Phys 51:034101

    Article  Google Scholar 

  17. Asubar JT, Kawabata S, Tokuda H, Yamamoto A, Kuzuhara M (2020) Enhancement-mode AlGaN/GaN MIS-HEMTs with high VTH and high IDmax using recessed-structure with regrown AlGaN barrier. IEEE Electron Device Lett 41:693–696

    Article  CAS  Google Scholar 

  18. Hwang I, Kim J, Choi HS, Choi H, Lee J, Kim KY, Park JB, .Lee JC (2013) p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current. IEEE Electron Device Lett 34:202–204

    Article  CAS  Google Scholar 

  19. Ge M, Ruzzarin M, Chen D, Lu H, Yu X, Zhou J, Santi CD, Zhang R, Zheng Y (2019) Gate reliability of p-GaN gate AlGaN/GaN high electron mobility transistors. IEEE Electron Device Lett 40:379–382

    Article  CAS  Google Scholar 

  20. Kong YC, Xue FS, Zhou JJ, Li L, Chen C, Li YR (2009) Ferroelectric polarization-controlled two-dimensional electron gas in ferroelectric/AlGaN/GaN heterostructure. Appl Phys A 95(3):703–706

    Article  CAS  Google Scholar 

  21. Lee C-T, Yang C-L et al (2015) GaN-based enhancement-mode metal–oxide–semiconductor high-electron mobility transistors using LiNbO3 ferroelectric insulator on gate-recessed structure. IEEE Trans Electron Devices 62(8):2481–2487

    Article  CAS  Google Scholar 

  22. Panda D, Lenka TR (2019) Linearity improvement in E-mode ferroelectric GaN MOS-HEMT using dual gate technology. IET J 14(6). https://doi.org/10.1049/mnl.2018.5499

  23. Lee C, Yang C, Tseng C (2015) ‘GaN-based enhancement-mode metal–oxide–semiconductor high-electron mobility transistors using LiNbO3 ferroelectric insulator on gate-recessed structure.’ IEEE Trans Electron Device 62(8):2481–2487

    Article  CAS  Google Scholar 

  24. Sentaurus Device User Guide (2016) Synopsys, Inc., Mountain View

  25. Jung JH, Cho MS, Jang WD et al (2020) Fabrication of AlGaN/GaN MISHEMT with dual-metal gate electrode and its performances. Appl Phys A 126:274. https://doi.org/10.1007/s00339-020-3453-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed mutually regarding this paper.

Corresponding author

Correspondence to K. Jena.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

The authors declared that the manuscript ethics is approved as per the journal.

Consent for Publication

The authors give full consent for the publication of this research work.

Competing Interests

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.N., Khan, A.N., Routray, S. et al. Effect of Dual Metal on RF/Analog and Linearity Performance of Double Gate Ferroelectric Si-doped-HfOGaN MOSHEMT. Silicon 15, 805–812 (2023). https://doi.org/10.1007/s12633-022-02045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02045-3

Keywords

Navigation