Skip to main content
Log in

The Influence of PVC and (PVC:SnS) Interfacial Polymer Layers on the Electric and Dielectric Properties of Au/n-Si Structure

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

To determine the impact of pure and (PVC:SnS) interlayers on the electrophysical features of Schottky barrier diodes (SBDs), Au/n-Si, Au/PVC/n-Si, and Au/(PVC: SnS)/n-Si structures are created on the same n-Si wafer. The average crystalline size, surface-morphology, purity-characterization, and optical features of the prepared SnS-nanostructure are studied by different common techniques. Basic electrical-parameters of these structures are calculated from the I-V data. The energy-dependent distribution of surface-states (Nss) and the current-conduction-mechanisms (CCMs) in these diodes were extracted. The use of PVC and SnS-doped PVC interfacial polymer layers leads to improving the performance of SBDs by increasing the n, Rs, Nss, I0 and an increase in Rsh, Barrier Height (BH). The dielectric-constant (\({\epsilon }^{{\prime }}\))/loss (\({\epsilon }^{{\prime }{\prime }}\)), and ac electrical-conductivity \({\sigma }_{ac}\) of them are investigated in wide-range frequency (100 Hz-1 MHz) by using capacitance/conductance-frequency (C/G-f) measurements and the origin of observed negative capacitance/dielectric at low-frequencies were discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nicollian EH, Brews JR (2002) MOS (metal oxide semiconductor) physics and technology. Wiley, New York

    Google Scholar 

  2. Sze SM, Li Y, Ng KK (2021) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  3. Tataroglu AD, Buyukbas Ulusan A, Altındal Ş, Azizian-Kalandaragh YA (2021) J Inorg Organomet Polym Mater 31:1668–1675

    Article  CAS  Google Scholar 

  4. Zhu CY, Feng LF, Wang CD, Cong HX, Zhang GY, Yang ZJ, Chen ZZ (2009) Solid-State Electron 53:324–328

    Article  CAS  Google Scholar 

  5. Altındal Ş, Barkhordari A, Azizian-Kalandaragh Y, Çevrimli BS, Mashayekhi HR (2022) Mater Sci Semicond Process 147:106754

    Article  Google Scholar 

  6. Noguchi T, Kitagawa M, Taniguchi I (1980) Jpn J Appl Phys 19:1423

    Article  CAS  Google Scholar 

  7. Byrum LE, Ariyawansa G, Jayasinghe RC, Dietz N, Perera AG, Matsik SG, Ferguson IT, Bezinger A, Liu HC (2009) J Appl Phys 106:053701

    Article  Google Scholar 

  8. Barkhordari A, Mashayekhi HR, Azizian-Kalandaragh Y (2020) Phys B Condens Matter 596:412406

    Article  CAS  Google Scholar 

  9. Gharbi R, Abdelkrim M, Fathallah M, Tresso E, Ferrero S, Pirri CF, Brahim TM (2006) Solid-state electron 50:367–371

    Article  CAS  Google Scholar 

  10. Bisquert J, Garcia-Belmonte G, Pitarch Á, Bolink HJ (2006) Chem Phys Lett 422:184–191

    Article  CAS  Google Scholar 

  11. Arslan E, Şafak Y, Altındal Ş, Kelekçi Ö, Özbay E (2010) J Non-Cryst Solids 356:1006–10011

    Article  CAS  Google Scholar 

  12. Wu X, Yang ES, Evans HL (1990) J Appl Phys 68:2845–2848

    Article  CAS  Google Scholar 

  13. Ashery A, Gad SA, Turky GM, Gaballah AE (2021) ECS J Solid State Sci Technol 10:031006

    Article  CAS  Google Scholar 

  14. Demirezen S, Tanrıkulu EE, Altındal Ş (2019) Indian J Phys 93:739–747

    Article  CAS  Google Scholar 

  15. Demirezen S, Kaya A, Yerişkin SA, Balbaşı M, Uslu I (2016) Results Phys 6:180–185

    Article  Google Scholar 

  16. Butcher KS, Tansley TL, Alexiev D (1996) Solid-State Electron 39:333–336

    Article  CAS  Google Scholar 

  17. Huang XL, Shin YG, Lim KY, Suh EK, Lee HJ, Shen SC (1997) Solid-State Electron 41:845–850

    Article  CAS  Google Scholar 

  18. Yerişkin SA, Balbaşı M, Orak İ (2017) J Mater Sci Mater Electron 28:14040–14048

    Article  Google Scholar 

  19. Sharma M, Tripathi SK (2016) Mater Sci Semicond Process 41:155–161

    Article  CAS  Google Scholar 

  20. Büyükbaş Uluşan A, Tataroğlu A, Azizian-Kalandaragh Y, Altındal Ş (2018) J Mater Sci Mater Electron 29:159–170

    Article  Google Scholar 

  21. Al-Ta’ii HM, Amin YM, Periasamy V (2016) Sci Rep 6:1–3

    Article  Google Scholar 

  22. Masouleh FF, Das NK, Mashayekhi HR (2013) Opt Eng 52:127101

    Article  Google Scholar 

  23. Masouleh FF, Das N, Rozati SM (2015) Opt Quant Electron 47:1477–1485

    Article  CAS  Google Scholar 

  24. Das N, Karar A, Vasiliev M, Tan CL, Alameh K, Lee YT (2011) Opt Commun 284:1694–1700

    Article  CAS  Google Scholar 

  25. Das N, Masouleh FF, Mashayekhi HR (2014) IEEE Trans on Nanotechnol 13:982–989

    Article  Google Scholar 

  26. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Opt express 18:6191–16204

    Article  CAS  Google Scholar 

  27. Premaratne M (2011) Light propagation in gain media: optical amplifiers. Cambridge University Press, London

    Book  Google Scholar 

  28. Barkhordari A, Özçelik S, Altındal Ş, Pirgholi-Givi G, Mashayekhi H, Azizian-Kalandaragh Y (2021) Phys Scr 96:085805

    Article  Google Scholar 

  29. Cheung SK, Cheung NW (1986) Appl Phys Lett 49:85–87

    Article  CAS  Google Scholar 

  30. Norde H (1979) J Appl Phys 50:5052–5053

    Article  CAS  Google Scholar 

  31. Reddy VR (2014) Thin Solid Films 556:300–306

    Article  CAS  Google Scholar 

  32. Altındal Ş, Barkhordari A, Özçelik S, Pirgholi-Givi G, Mashayekhi HR, Azizian-Kalandaragh Y (2021) Phys Scr 96:125838

    Article  Google Scholar 

  33. Buyukbas-Uluşan A, Yerişkin SA, Tataroğlu AD, Balbaşı M, Kalandaragh YA (2018) J Mater Sci Mater Electron 29:8234–8243

    Article  Google Scholar 

  34. Schroeder H (2015) J Appl Phys 117:215103

    Article  Google Scholar 

  35. Marıl E, Kaya A, Koçyiğit S, Altındal Ş (2015) Mater Sci Semicond Process 31:256–261

    Article  Google Scholar 

  36. Schroder DK (2015) Semiconductor material and device characterization. Wiley, New York

    Google Scholar 

  37. Seghier D, Gislason HP (2000) J Appl Phys 88:6483–6487

    Article  CAS  Google Scholar 

  38. Barkhordari A, Özçelik S, Pirgholi-Givi G, Mashayekhi HR, Altındal Ş, Azizian-Kalandaragh Y (2021) Silicon 21:1–7

    Google Scholar 

  39. Abdallah FB, Benali A, Triki M, Dhahri E, Graca MP, Valente MA (2018) Superlattices Microstruct 117:260–270

    Article  CAS  Google Scholar 

  40. Tecimer H, Uslu H, Alahmed ZA, Yakuphanoğlu F, Altındal Ş (2014) Compos B Eng 57:25–30

    Article  CAS  Google Scholar 

  41. Abdullah OG, Salman YA, Saleem SA (2016) J Mater Sci Mater Electron 27:3591–3598

    Article  CAS  Google Scholar 

  42. Altındal Ş, Barkhordari A, Pirgholi-Givi G, Ulusoy M, Mashayekhi H, Özçelik S, Azizian-Kalandaragh Y (2021) Phys Scr 96:125881

    Article  Google Scholar 

  43. Bator G (1997) Ferroelectrics 200:287–295

    Article  CAS  Google Scholar 

  44. Chandrakala HN, Ramaraj B, Madhu GM (2012) J Mater Sci 47:8076–8084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2019-26).

Funding

This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2019-26).

Author information

Authors and Affiliations

Authors

Contributions

The author contribution of this article contribute is as follows: Ali Barkhordari, Experiments, Data analyses and graphs, writing; Şemsettin Altındal, Writing, editing and interpretation of electrical properties; Gholamreza Pirgholi-Givi, Experiments, Analyses of the samples, Discussion; Hamid Reza Mashayekhi, Writing, editing and interpretation of electrical properties; Süleyman Özçelik, Discussion, Writing and editing; Yashar Azizian-Kalandaragh, Idea, experimental section, editing and discussion.

Corresponding authors

Correspondence to Ali Barkhordari or Yashar Azizian-Kalandaragh.

Ethics declarations

Conflict of Interest

The authors declare no financial or commercial conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethics Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkhordari, A., Altındal, Ş., Pirgholi-Givi, G. et al. The Influence of PVC and (PVC:SnS) Interfacial Polymer Layers on the Electric and Dielectric Properties of Au/n-Si Structure. Silicon 15, 855–865 (2023). https://doi.org/10.1007/s12633-022-02044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02044-4

Keywords

Navigation