Skip to main content
Log in

Impact of CNx Layer Thickness on the Performance of c-Si Solar Cells: Experimental and PC1D Simulation Study

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study aims to investigate the application of amorphous carbon nitride (CNx) as an alternative anti-reflection coating (ARC) to crystalline silicon solar cells. The CNx films were deposited by reactive RF magnetron sputtering. The measured optical constants were used as input parameters in the PC1D program to simulate the photovoltaic performance of the solar cells. The impact of various refractive indexes and the thickness of the CNx coating as ARC were investigated. Findings revealed that the average reflectance was reduced by 64% using the CNx coating in the 300–1300 nm wavelength range. At the optimum thickness of 85 nm, the power conversion efficiency has increased by 57% compared with the bare silicon solar cell. The results confirm that the contribution to efficiency improvement comes from the gain in short circuit current density rather than the increment in open-circuit voltage. Results also show that the fill factor has an insignificant contribution to efficiency improvement. The external quantum efficiency (EQE) for coating thicknesses between 70 and 90 nm increased by 69% at a wavelength of 600 nm. The present simulation study confirmed that the application of CNx coating is a potential candidate as ARC material for efficient c-Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author Ali J. Addie on reasonable request.

References

  1. Behera S, Fry PW, Francis H, Jin CY, Hopkinson M (2020) Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-63327-7

    Article  CAS  Google Scholar 

  2. Oh G, Kim Y, Lee SJ, Kim EK (2020) Broadband antireflective coatings for high efficiency InGaP/GaAs/InGaAsP/InGaAs multi-junction solar cells. Sol Energy Mater Sol Cells 207(December 2019):110359. https://doi.org/10.1016/j.solmat.2019.110359

  3. Ding J et al (2020) A laser texturing study on multi-crystalline silicon solar cells. Sol Energy Mater Sol Cells 214(December 2019):110587. https://doi.org/10.1016/j.solmat.2020.110587

  4. Greulich J et al (2015) Optical simulation and analysis of Iso-textured silicon solar cells and modules including light trapping. Energy Procedia 77:69–74. https://doi.org/10.1016/j.egypro.2015.07.011

    Article  CAS  Google Scholar 

  5. Baryshnikova KV, Petrov MI, Babicheva VE, Belov PA (2016) Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci Rep 6(March):1–11. https://doi.org/10.1038/srep22136

  6. Amalathas AP, Alkaisi MM (2019) Nanostructures for light trapping in thin film solar cells. Micromachines 10:1–18. https://doi.org/10.3390/mi10090619

    Article  Google Scholar 

  7. Schmidt J, Peibst R, Brendel R (2018) Surface passivation of crystalline silicon solar cells: Present and future. Sol Energy Mater Sol Cells 187(January):39–54. https://doi.org/10.1016/j.solmat.2018.06.047

  8. Uzum A, Kanmaz I (2021) Passivation properties of HfO2-SiO2 mixed metal oxide thin films with low reflectivity on silicon substrates for semiconductor devices. Thin Solid Films 738:138965. https://doi.org/10.1016/J.TSF.2021.138965

  9. Sun X et al (2020) Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol–gel combined with electron beam evaporation. Opt Mater (Amst) 101(January):2–10. https://doi.org/10.1016/j.optmat.2020.109739

  10. Liu B, Qiu S, Chen N, Du G, Sun J (2013)Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells. Mater Sci Semicond Process 16(3):1014–1021. https://doi.org/10.1016/j.mssp.2013.02.019

    Article  CAS  Google Scholar 

  11. Zahid MA, Khokhar MQ, Cui Z, Park H, Yi J (2021) Improved optical and electrical properties for heterojunction solar cell using Al2O3/ITOdouble-layer anti-reflective coating. Results Phys 28:104640. https://doi.org/10.1016/J.RINP.2021.104640

  12. Saive R (2021) Light trapping in thin silicon solar cells: A review on fundamentals and technologies. Prog Photovolt Res Appl 29(10):1125–1137. https://doi.org/10.1002/pip.3440

    Article  CAS  Google Scholar 

  13. Bashir Khan S, Wu H, Pan C, Zhang Z (2017) A mini review: Antireflective coatings processing techniques, applications and future perspective. Res Rev J Mater Sci 05(06):36–54. https://doi.org/10.4172/2321-6212.1000192

    Article  Google Scholar 

  14. Kanda H et al (2016) Al2O3 /TiO2 double layer anti-reflection coating film for crystalline silicon solar cells formed by spray pyrolysis. Energy Sci Eng 4(4):269–276. https://doi.org/10.1002/ese3.123

  15. Jhansirani K, Dubey RS, More MA, Singh S (2016) Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications. Results Phys 6:1059–1063. https://doi.org/10.1016/j.rinp.2016.11.029

    Article  Google Scholar 

  16. Silva JA, Quoizola S, Hernandez E, Thomas L, Massines F (2014) Silicon carbon nitride films as passivation and antireflective coatings for silicon solar cells. Surf Coat Technol 242:157–163. https://doi.org/10.1016/j.surfcoat.2014.01.037

    Article  CAS  Google Scholar 

  17. Li M, Shen H, Zhuang L, Chen D, Liang X (2014) SiO2antireflection coatings fabricated by electron-beam evaporation for black monocrystalline silicon solar cells. Int J Photoenergy 2014. https://doi.org/10.1155/2014/670438

  18. Baek SH, Noh BY, Shin JK, Kim JH (2012) Optical and photovoltaic properties of silicon wire solar cells with controlled ZnO nanorods antireflection coating. J Mater Sci 47(9):4138–4145. https://doi.org/10.1007/s10853-012-6268-7

    Article  CAS  Google Scholar 

  19. Ismail RA, Mousa AM, Hussain ZT (2017) Preparation and characteristics study of diamond like carbon / silicon heterojunction photodetector by pulsed laser deposition. Opt Quantum Electron 1–15. https://doi.org/10.1007/s11082-017-1204-3

  20. Nauryzbekova S, Nussupov K, Bakranova D (2022) “Simulation of Antireflective coatings system based on Porous Si/DLC and SiO2/TiO2 for Si solar cells,” Mater Today Proc 49:2474–2477. https://doi.org/10.1016/j.matpr.2020.11.673

  21. Ismail RA, Mousa AM, Hussain ZT (2017) Optik Effect of nitrogen pressure on the performance of a-C: N /p-Si photodetector prepared by pulsed laser deposition. Opt - Int J Light Electron Opt 139:328–337. https://doi.org/10.1016/j.ijleo.2017.04.030

    Article  CAS  Google Scholar 

  22. Nilkar M, Ghodsi FE, Jafari S, Thiry D, Snyders R (2021) Effects of nitrogen incorporation on N-doped DLC thin film electrodes fabricated by dielectric barrier discharge plasma: Structural evolution and electrochemical performances. J Alloys Compd 853:157298. https://doi.org/10.1016/j.jallcom.2020.157298

    Article  CAS  Google Scholar 

  23. Kayed K (2019) The optical band gap in amorphous carbon nitride thin films: Effect of sp2 hybridized C atoms configurations. Fullerenes Nanotubes Carbon Nanostruct 27(10):796–802. https://doi.org/10.1080/1536383X.2019.1648438

    Article  CAS  Google Scholar 

  24. Wicher B et al (July, 2021) Applications insight into the plasmochemical state and optical properties of amorphous CNx films deposited by gas injection magnetron sputtering method. Appl Surf Sci 565. https://doi.org/10.1016/j.apsusc.2021.150540

  25. er Yang F, yan Yang S, xin Chang X, Yang W, Song R, Zheng X (2019) Microstructure and properties of DLC/CNx films with different CNx sublayer thicknesses. Surf Coat Technol 374(March):418–423. https://doi.org/10.1016/j.surfcoat.2019.06.011

  26. Miller TS, Jorge AB, Suter TM, Sella A, Corà F, McMillan PF (2017) Carbon nitrides: Synthesis and characterization of a new class of functional materials. Phys Chem Chem Phys 19(24):15613–15638. https://doi.org/10.1039/c7cp02711g

    Article  CAS  Google Scholar 

  27. Liu DG, Zheng L, Liu JQ, Luo LM, Wu YC (2018) Structure and lubricated tribological behavior of silicon incorporated carbon nitride composite films deposited by magnetron sputtering. Diam Relat Mater 82:115–123. https://doi.org/10.1016/j.diamond.2018.01.008

    Article  CAS  Google Scholar 

  28. Kowsar A, Billah M, Dey S, Debnath SC, Yeakin S, Uddin Farhad SF (2019) Comparative Study on Solar Cell Simulators. ICIET –2nd Int. Conf. Innov. Eng. Technol., pp 23–24. https://doi.org/10.1109/ICIET48527.2019.9290675

  29. Üzüm A, Mandong A-M(2019) Analysis of silicon solar cell device parameters using PC1D. Sak Univ J Sci :1190–1197. https://doi.org/10.16984/saufenbilder.557490

  30. Karpov V, Shvydka D (2021) Physics of Thin‐Film Photovoltaics. Wiley, https://doi.org/10.1002/9781119651185

  31. Huang H et al (2017) Data of the recombination loss mechanisms analysis on Al2O3 PERC cell using PC1D and PC2D simulations. Data Br 11:27–31. https://doi.org/10.1016/j.dib.2016.12.031

    Article  Google Scholar 

  32. Haug H, Greulich J (2016) PC1Dmod 6.2 - Improved Simulation of c-Si Devices with Updates on Device Physics and User Interface. Energy Procedia 92:60–68. https://doi.org/10.1016/j.egypro.2016.07.010

    Article  CAS  Google Scholar 

  33. Helmich L, Walter DC, Bredemeier D, Falster R, Voronkov VV, Schmidt J (2018)In-situ characterization of electron-assisted regeneration of Cz-Si solar cells. Sol Energy Mater Sol Cells 185(March):283–286. https://doi.org/10.1016/j.solmat.2018.05.023

  34. Ali A, Cheow SL, Azhari AW, Sopian K, Zaidi SH (2017) Enhancing crystalline silicon solar cell efficiency with SixGe1 – x layers. Results Phys 7:225–232. https://doi.org/10.1016/j.rinp.2016.11.060

    Article  Google Scholar 

  35. Lee JH et al (2019) Efficiency characteristics of a silicon oxide passivation layer on p-type crystalline silicon solar cell at low illumination. Curr Appl Phys 19(6):683–689. https://doi.org/10.1016/j.cap.2019.03.006

    Article  Google Scholar 

  36. Shah DK, KC D, Parajuli D, Akhtar MS, Kim CY, Yang OB (2022) A computational study of carrier lifetime, doping concentration, and thickness of window layer for GaAs solar cell based on Al2O3 antireflection layer. Sol Energy 234(September 2021):330–337. https://doi.org/10.1016/j.solener.2022.02.006

  37. Subramanian M et al (2021) Optimization of antireflection coating design using PC1D simulation for c – Si solar cell application. Electronics 10:3132. https://doi.org/10.3390/electronics10243132

  38. Thirunavukkarasu GS et al (2021) Optimization of mono-crystalline silicon solar cell devices using pc1d simulation. Energies 14:1–13. https://doi.org/10.3390/en14164986

    Article  CAS  Google Scholar 

  39. Paviet-Salomon B, Gall S, Monna R, Manuel S, Slaoui A (2011) Experimental and analytical study of saturation current density of laser-doped phosphorus emitters for silicon solar cells. Sol Energy Mater Sol Cells 95(8):2536–2539. https://doi.org/10.1016/j.solmat.2011.03.001

    Article  CAS  Google Scholar 

  40. Subramanian M et al (2022) Optimization of effective doping concentration of emitter for ideal c-Si solar cell device with PC1D simulation. Crystals 12(2):244. https://doi.org/10.3390/cryst12020244

  41. Ramanujam J et al (2016) Inorganic photovoltaics - Planar and nanostructured devices. Prog Mater Sci 82(April):294–404. https://doi.org/10.1016/j.pmatsci.2016.03.005

  42. Lichvár P, Liška M, Galusek D (2002) What is the true Kramers-Kronig transform? Ceram - Silikaty 46(1):25–27

    Google Scholar 

  43. Lejeune M, Charvet S, Zeinert A, Benlahsen M (2008) Optical behavior of reactive sputtered carbon nitride films during annealing. J Appl Phys 103(1):013507. https://doi.org/10.1063/1.2828166

  44. Majumdar A, Bogdanowicz R, Mukherjee S, Hippler R (2013) Role of nitrogen in optical and electrical band gaps of hydrogenated/hydrogen free carbon nitride film. Thin Solid Films 527:151–157. https://doi.org/10.1016/j.tsf.2012.11.020

    Article  CAS  Google Scholar 

  45. Majumdar A, Bogdanowicz R, Hippler R (2011) Ellipsometric study of carbon nitride films deposited by DC-magnetron sputtering. Photonics Lett Pol 3(2):70–72. https://doi.org/10.4302/plp.2011.2.09

    Article  CAS  Google Scholar 

  46. McIntosh KR, Baker-Finch SC (2012) OPAL 2: Rapid optical simulation of silicon solar cells. Conf Rec IEEE Photovolt Spec Conf 265–271. https://doi.org/10.1109/PVSC.2012.6317616

  47. Hashmi G, Rashid MJ, Mahmood ZH, Hoq M, Rahman MH (2018) Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells. J Theor Appl Phys 12(4):327–334. https://doi.org/10.1007/s40094-018-0313-0

    Article  Google Scholar 

  48. Sharma R (2018) Silicon nitride as antireflection coating to enhance the conversion efficiency of silicon solar cells. Turkish J Phys 42(4):350–355. https://doi.org/10.3906/fiz-1801-28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, simulation, and analysis were performed by Ali J. Addie and Raid A. Ismail. The first draft of the manuscript was written by Ali J. Addie. All authors discussed the results and contributed equally to the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali J. Addie.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest directly or indirectly related to the work submitted for publication.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addie, A.J., Ismail, R.A. & Mohammed, M.A. Impact of CNx Layer Thickness on the Performance of c-Si Solar Cells: Experimental and PC1D Simulation Study. Silicon 14, 12485–12493 (2022). https://doi.org/10.1007/s12633-022-01948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01948-5

Keywords

Navigation