Carballo J, Chan WJ, Gargini PA, Kahng AB, Nath S (2014) ITRS 2.0: Toward a reframing of the semiconductor technology roadmap. Paper presented at the 32nd IEEE International Conference on Computer Design (ICCD), Seoul, South Korea, 19–22 October. https://www.computer.org/csdl/proceedings/iccd/2014/12OmNqGA5il
Noor FA, Bimo C, Syuhada I, Winata T, Khairurrijal K (2019) A compact model for gate tunneling currents in undoped cylindrical surrounding-gate metal-oxide-semiconductor field-effect transistors. Microelectron Eng 216:111086. https://doi.org/10.1016/j.mee.2019.111086
CAS
Article
Google Scholar
Mamaluy D, Gao X (2015) The fundamental downscaling limit of field effect transistors. Appl Phys Lett 106:193503. https://doi.org/10.1063/1.4919871
CAS
Article
Google Scholar
Raut P, Nanda U (2021) RF and Linearity Parameter Analysis of Junction-less Gate All Around (JLGAA) MOSFETs and their dependence on Gate Work Function. Silicon 68. https://doi.org/10.1007/s12633-021-01312-z
Meriga C, Ponnuri RT, Satyanarayana BVV, Gudivada AAK, Panigrahy AK, Prakash MD (2021) A novel teeth junction less gate all around FET for improving electrical characteristics. Silicon 47. https://doi.org/10.1007/s12633-021-00983-y
Wang T, Lou L, Lee C (2013) A Junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron Device Lett 34:478–480 https://ieeexplore.ieee.org/document/6471739
Article
Google Scholar
Yamabe K, Endoh T (2021) Ultimate vertical gate-all-around metal–oxide–semiconductor field-effect transistor and its three-dimensional integrated circuits. Mater Sci Semicond Process 134:106046. https://doi.org/10.1016/j.mssp.2021.106046
CAS
Article
Google Scholar
Sreenivasulu VB, Narendar V (2021) Characterization and optimization of junctionless gate-all-around vertically stacked nanowire FETs for sub-5 nm technology nodes. Microelectron J 116:105214. https://doi.org/10.1016/j.mejo.2021.105214
CAS
Article
Google Scholar
Djeffal F, Ferhati H, Bentrcia T (2016) Improved analog and RF performances of gate-all-around junctionless MOSFET with drain and source extensions. Superlattice Microst 90:132–140. https://doi.org/10.1016/j.spmi.2015.09.041
CAS
Article
Google Scholar
Moon DI, Choi SJ, Duarte JP, Choi YK (2013) Investigation of silicon nanowire gate-all-around junctionless transistors built on a bulk substrate. IEEE Trans Electron Devices 60:1355–1360 https://ieeexplore.ieee.org/document/6473874
CAS
Article
Google Scholar
Sharma M, Gupta M, Narang R, Saxena M (2018) Investigation of Gate All Around Junctionless Nanowire Transistor with Arbitrary Polygonal Cross Section. Paper presented at the 4th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 16–17 March
Thomas S (2020) Gate-all-around transistors stack up. Nature Electron 3:728. https://doi.org/10.1038/s41928-020-00517-1
Article
Google Scholar
Smaani B, Latreche S, Iniguez B (2013) Compact drain-current model for undoped cylindrical surrounding-gate metal-oxide semiconductor field effect transistors including short channel effects. J Appl Phys 114:224507. https://doi.org/10.1063/1.4844395
CAS
Article
Google Scholar
Rahmana IKMR, Khan Md I, Khosru QDM (2021) Analytical drain current and performance evaluation for inversion type InGaAs gate-all-around MOSFET. AIP Adv 114:065108. https://doi.org/10.1063/5.0052718
CAS
Article
Google Scholar
Cao, W., Shen, C., Cheng, S.Q., Huang, D.M.,. Yu, H.Y, Singh, N., Lo, G.Q., Kwong, D.L., Li, M.F.: Gate tunneling in nanowire MOSFETs. IEEE Electron Device Lett, 32, 461–463 (2011). https://ieeexplore.ieee.org/document/5725159
Nowbahari A, Roy A, Marchetti L (2020) Junctionless transistors: state-of-the-art. Electronics 9:1174. https://doi.org/10.3390/electronics9071174
CAS
Article
Google Scholar
Talukdar A, Raibaruah AK, Sarma KCD (2020) Dependence of electrical characteristics of Junctionless FET on body material. Procedia Comput Sci 171:1046–1053. https://doi.org/10.1016/j.procs.2020.04.112
Article
Google Scholar
Jeon CH, Park JY, Scol ML et al (2016) Joule heating to enhance the performance of a gate-all-around silicon nanowire transistor. IEEE Trans Electron Devices 63:2288–2292 https://ieeexplore.ieee.org/document/7458209
CAS
Article
Google Scholar
Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge J-P (2009) Junctionless multigate field-effect transistor. Appl Phys Lett 94:053511. https://doi.org/10.1063/1.3079411
CAS
Article
Google Scholar
Lee C-W, Ferain I, Afzalian A, Yan R, Dehdashti N, Razavi P, Colinge J-P (2010) Performance estimation of junctionless multigate transistors. Solid State Electron 54:97–103. https://doi.org/10.1016/j.sse.2009.12.003
CAS
Article
Google Scholar
Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher AM, McCarthy B, Murphy R (2010) Nanowire transistors without junctions. Nat Nanotechnol 5:225–229. https://doi.org/10.1038/nnano.2010.15
CAS
Article
PubMed
Google Scholar
Aditya M, Rao KS, Balaji B et al (2022) Comparison of drain current characteristics of advanced MOSFET structures - a review. Silicon 61. https://doi.org/10.1007/s12633-021-01638-8
Gupta A, Rai MK, Pandey AK et al (2021) A novel approach to investigate analog and digital circuit applications of silicon Junctionless-double-gate (JL-DG) MOSFETs. Silicon 26. https://doi.org/10.1007/s12633-021-01520-7
Talukdar A, Raibaruah A, Sarma KKCD (2020) Dependence of electrical characteristics of Junctionless FET on body material. Procedia Comput Sci 171:1043–1056. https://doi.org/10.1016/j.procs.2020.04.112
Article
Google Scholar
Jung A, Bonnassieux Y (2020) Horowitz, et al: advances in compact modeling of organic field-effect transistors. IEEE Electron Devices Soc 8:1404–1415 https://ieeexplore.ieee.org/document/9180337
CAS
Article
Google Scholar
Preethi S, Venkatesh M, Pandian M, Lakshmi Priya GL (2021) Analytical modeling and simulation of gate-all-around Junctionless Mosfet for biosensing applications. Silicon 13:3755–3764. https://doi.org/10.1007/s12633-021-01301-2
CAS
Article
Google Scholar
Shi JX, Xi L, In KH, Ho LJ (2013) A continuous current model of accumulation mode (Junctionless) cylindrical surrounding-gate nanowire MOSFETs. Chin Phys Lett 30:038502
Article
Google Scholar
Pratap Y, Kumar M, Kabra S, Haldar S, Gupta RS, Gupta M (2018) Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species. J Comput Electron 17:288–296. https://doi.org/10.1007/s10825-017-1041-4
CAS
Article
Google Scholar
Duarte JP, Choi S-J, Moon D-I, Choi Y-K (2012) A nonpiecewise model for long-channel junctionless cylindrical nanowire FETs. IEEE Electron Device Lett 33:155–157
Article
Google Scholar
Trivedi N, Kumar M, Haldar S, Deswal SS et al (2016) Analytical modeling of Junctionless Accumulation Mode Cylindrical Surrounding Gate MOSFET (JAM-CSG). Int J Numer Model: Electron Netw Devices Fields 29:1036–1043. https://doi.org/10.1002/jnm.2162
Article
Google Scholar
Gnani E, Gnudi A, Reggiani S, Baccarani G (2012) Theory of the junctionless nanowire FET. IEEE Trans Electron Devices 58:2903–2910
Article
Google Scholar
Sorée B, Magnus W, Pourtois G (2008) Analytical and self-consistent quantum–mechanical model for a surrounding gate MOS nanowire operated in JFET mode. J Comput Electron 7:380–383. https://doi.org/10.1007/s10825-008-0217-3
CAS
Article
Google Scholar
Moldovan O, Lime F, Iñiguez B (2015) A completeand Verilog-a compatible gate-all-Aroundlong-channel junctionless MOSFET model implemented in CMOS inverters. Microelectron J 46:1069–1072. https://doi.org/10.1016/j.mejo.2015.09.009
Article
Google Scholar
Lime F, Moldovan O, Iñiguez B (2014) A compact explicit model for Long-Channel gate-all-around Junctionless MOSFETs. Part I: DC Characteristics. IEEE Trans Electron Devices 61:3036–3041
Article
Google Scholar
Colinge J-P, Lee C-W, Ferain I, Akhavan ND, Yan R, Razavi P, Yu R, Nazarov AN, Doria RT (2010) Reduced electric field in junctionless transistors. Appl Phys Lett 96:073510. https://doi.org/10.1063/1.3299014
CAS
Article
Google Scholar
Smaani B, Labiod S, Nafa F et al (2021) Analytical drain-current model and surface-potential calculation for junctionless cylindrical surrounding-gate MOSFETs. Inter J Circ Syst Sig Proc 15:1394–1399
Google Scholar
SILVACO International ATLAS User’s manual (2007)
SMASH User’s Manual Version 5.18 (2012)
Goessel M, Ocheretny V, Sogomonyan E, Marienfeld D (2008) New methods of concurrent checking. Springer
Google Scholar
Bella M, Latreche S, Gontrand C (2015) Nanoscale DGMOSFET: DC modification and analysis of noise in RF oscillator. J Appl Sci 5:800–807 https://scialert.net/abstract/?doi=jas.2015.800.807
Article
Google Scholar
Rahi SB, Tayal S, Upadhyay AK (2021) A review on emerging negative capacitance field effect transistor for lowpower electronics. Microelectron J 116:105242. https://doi.org/10.1016/j.mejo.2021.105242
CAS
Article
Google Scholar
Ayers JE (2009) Digital integrated circuits analysis and design2nd edn. CRC Press
Google Scholar
Chen WK (2005) The electrical engineering handbook. Elsevier Academic Press
Google Scholar
Kang SM, Leblebici Y, Kim CW (2014) CMOS Digital Integrated Circuits Analysis & Design. McGraw-Hill Education
Google Scholar
Moldovan O, Lime F, Barraud S, Smaani B, Latreche S, Iñiguez B (2015) Experimentally verified drain-current modelfor variable barrier transistor. Electron Lett 51:1364–1366. https://doi.org/10.1049/el.2015.1475
CAS
Article
Google Scholar
Smaani B, Bella M, Latreche S (2014) Compact modeling of lightly doped nanoscale DG MOSFET transistor. Appl Mech Mater 492:06–10. https://doi.org/10.4028/www.scientific.net/AMM.492.306
CAS
Article
Google Scholar