Skip to main content
Log in

Potential Mechanism of LeTID Dynamic Behavior Dependent on Firing and Hydrogenation with Electron Injection

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In recent years, the behavior of light and elevated temperature-induced degradation (LeTID) has seriously influence on the performance and stability of high efficiency passivated emitter and rear contact (PERC) solar cells and thus remains a crucial challenge for manufacturers. In this work, we explored the LeTID behavior of p-type boron-gallium co-doped commercial multicrystalline silicon (mc-Si) PERC cells under different firing conditions with or without hydrogenation with electron injection (HEI) treatment. It was found that kinetics of LeTID were strongly affected by the peak firing temperature, and the injection carriers could change the kinetic behavior. A fitting model was implemented to explore the influence of carrier injection on the dependence between firing conditions and LeTID behavior. This dependence relationship was explained by the variation of hydrogen concentration, which was modulated by the peak firing temperature. In addition, a trajectory equation of hydrogen and related theoretical model were established to systematically describe the mechanism that might trigger the LeTID behavior. Finally, response surface methodology (RSM) were used to explore and optimize solutions to improve performance and stability of the cells. These results were not only contribution to elucidate potential mechanism of LeTID, but also to guide the development matching commercial PERC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Grant NE, Scowcroft JR, Pointon AI, Al-Amin M, Altermatt PP, Murphy JD (2020). Sol Energy Mater Sol Cells 206:110299

    Article  CAS  Google Scholar 

  2. Zhang SD, Peng JQ, Qian HQ, Shen HL, Wei QZ, Lian WF et al (2019). Energies 12:416

    Article  CAS  Google Scholar 

  3. Modanese C, Mt W, Wolny F, Oehlke A, Laine HS, Inglese A et al (2018). Sol Energy Mater Sol Cells 186:373

    Article  CAS  Google Scholar 

  4. Tabea L, Marko T, Christian H (2018). Sol Energy Mater Sol Cells 187:194

    Article  Google Scholar 

  5. Derricks C, Herguth A, Hahn G, Romer O, Pernau T (2019). Sol Energy Mater Sol Cells 195:358

    Article  Google Scholar 

  6. Lindroos J, Savin H (2016). Sol Energy Mater Sol Cells 147:115

    Article  CAS  Google Scholar 

  7. Möller C, Lauer K (2013). Phys Status Solidi RRL 7:461

    Article  Google Scholar 

  8. Kersten F, Engelhart P, Ploigt H-C, Stekolnikov A, Lindner T, Stenzel F et al (2015). Sol Energy Mater Sol Cells 142:83

    Article  CAS  Google Scholar 

  9. Fertig F, Krauß K, Rein S (2014). Phys Status Solidi RRL 9:41

    Article  Google Scholar 

  10. Nakayashiki K, Hofstetter J, Morishige AE, Li T, Needleman DB, Jensen MA et al (2016). IEEE J Photovolt 6:860

    Article  Google Scholar 

  11. Chen D, Kim M, Stefani BV, Hallam BJ, Abbott MD, Chan CE et al (2017). Sol Energy Mater Sol Cells 172:293

    Article  CAS  Google Scholar 

  12. Wagner M, Wolny F, Hentsche M, Krause A, Sylla L, Kropfgans F et al (2018). Sol Energy Mater Sol Cells 187:176

    Article  CAS  Google Scholar 

  13. Sperber D, Herguth A, Hahn G (2017). Phys Status Solidi RRL 11:1600408

    Article  Google Scholar 

  14. Sharma R, Chong AP, Li JB, Aberle AG, Huang Y (2019). Sol Energy Mater Sol Cells 195:160

    Article  CAS  Google Scholar 

  15. Schmid A, Fischer C, Skorka D, Herguth A, Winter C, Zuschlag A et al (2021). IEEE J Photovoltaics 11:967

    Article  Google Scholar 

  16. Vargas C, Kim K, Coletti G, Payne D, Chan C, Wenham S et al (2018). IEEE J Photovolt 8:413

    Article  Google Scholar 

  17. Jensen MA, Zuschlag A, Wieghold S, Skorka D, Morishige AE, Hahn G et al (2018). J Appl Phys 124:085701

    Article  Google Scholar 

  18. Chan CE, Payne DNR, Hallam BJ, Abbott MD, Wenham SR (2016). IEEE J Photovolt 6:1473

    Article  Google Scholar 

  19. Jensen MA, Morishige AE, Hofstetter J, Needleman DB, Buonassisi T (2017). IEEE J Photovolt 7:980

    Article  Google Scholar 

  20. Morishige AE, Jensen MA, Needleman DB, Nakayashiki K, Hofstetter J, Li T et al (2016). IEEE J Photovolt. 6:1466

    Article  Google Scholar 

  21. Bredemeier D, Walter DC, Herlufsen S, Schmidt J (2016). Energy Procedia 92:773

    Article  CAS  Google Scholar 

  22. Bredemeier D, Walter DC, Schmidt J (2018). Sol RRL 2:1700159

    Article  Google Scholar 

  23. Schmidt J, Bredemeier D, Walter DC (2019). IEEE J Photovolt 9:1497

    Article  Google Scholar 

  24. Lin DH, Hu ZC, Song LH, Yang DR, Yu XG (2021). Sol Energy 225:407

    Article  CAS  Google Scholar 

  25. Kwapil W, Niewelt T, Schubert MC (2017). Sol Energy Mater Sol Cells 173:80

    Article  CAS  Google Scholar 

  26. Payne DNR, Chan CE, Hallam BJ, Hoex B, Abbott MD, Wenham SR et al (2016). Sol Energy Mater Sol Cells 158:102

    Article  CAS  Google Scholar 

  27. Payne DNR, Chan CE, Hallam BJ, Hoex B, Abbott MD, Wenham SR et al (2016). Phys Status Solidi RRL 10:237

    Article  CAS  Google Scholar 

  28. Zhou CL, Ji FX, Cheng SZ, Zhu JJ, Wang WJ, Hu DL (2020). Sol Energy Mater Sol Cells 211:110508l

    Article  Google Scholar 

  29. Winter M, Walter D, Bredemeier D, Schmidt J (2019). Sol Energy Mater Sol Cells 201:110060

    Article  CAS  Google Scholar 

  30. Gläser M, Lausch D (2015). Energy Procedia 77:592

    Article  Google Scholar 

  31. Li SM, Shao JB, Xi X, Liu GL, Peng RY, Chen RL et al (2020). Bull Mater Sci 43:1

    Article  CAS  Google Scholar 

  32. Li SM, Xi X, Liu GL, Shao JB, Peng RY, Wang L et al (2021). J Renew Sustain Energy 13:023501

    Article  CAS  Google Scholar 

  33. Wilking S, Engelhardt J, Ebert S, Beckh C, Herguth A, Hahn G (2014) 29th European photovoltaic solar energy conference and exhibition, Amsterdam, Netherlands 366

  34. Lin DH, Hu ZC, He QY, Yang DR, Song LH, Yu XG (2021). Sol Energy Mater Sol Cells 226:111085

    Article  CAS  Google Scholar 

  35. Vargas C, Nie S, Chen D, Chan C, Hallam B, Coletti G et al (2019). IEEE J Photovolt 9:335

    Article  Google Scholar 

  36. Bredemeier D, Walter D, Herlufsen S, Schmidt J (2016). AIP Adv 6:035119

    Article  Google Scholar 

  37. Voronkov VV, Falster R (2017). Phys Status Solidi B 254:1600779

    Article  Google Scholar 

  38. Johnson NM, Doland C, Ponce F, Walker J, Anderson G (1991). Physica B Condensed Matter 170:3

    Article  CAS  Google Scholar 

  39. Hamer P, Hallam B, Bonilla RS, Altermatt PP, Wilshaw P, Wenham S (2018). J Appl Phys 123:043108

    Article  Google Scholar 

  40. Zhu J, Johnson NM, Herring C (1990). Phys Rev B 41:12354

    Article  CAS  Google Scholar 

  41. Sun C, Rougieux FE, Macdonald D (2015). J Appl Phys 117:045702

    Article  Google Scholar 

  42. Sheoran M, Kim DS, Rohatgi A, Dekkers HFW, Beaucarne G, Young M et al (2008). Appl Phys Lett 92:172107

    Article  Google Scholar 

  43. Hallam BJ, Hamer PG, Wenham SR, Abbott MD, Sugianto A, Wenham AM et al (2014). IEEE J Photovolt 4:88

    Article  Google Scholar 

  44. Walter DC, Bredemeier D, Falster R, Schmidt J, Voronkov VV (2020) 37th Eur. Photovoltaics Sol. Energy Conf. Exhib. 1:140

  45. Hamer P, Hallam B, Wenham S, Abbott M (2014). IEEE J Photovoltaics 4:1252

    Article  Google Scholar 

  46. Sperber D, Schwarz A, Herguth A, Hahn G (2018). Phys Status Solidi A 215:1800741

    Article  Google Scholar 

  47. Sperber D, Schwarz A, Herguth A, Hahn G (2018). Sol Energy Mater Sol Cells 188:112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This thesis would not have been possible without the consistent and valuable reference materials that I received from my supervisor, whose insightful guidance and enthusiastic encouragement in the course of my shaping this thesis definitely gain my deepest gratitude.

Funding

This project is supported by The National Natural Science Foundation of China (grant No. 61804066), The Natural Science Foundation of Jiangsu Province (grant No. BK20180596, BK20180601), China Postdoctoral Science Foundation (2020 M671602), Jiangsu Postdoctoral Science Foundation (2020K143B), Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant No. KYCX20_1770).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the concept, data collection, data analysis and interpretation of the paper. Shaomin Li contributed to data processing and analysis, and write the first draft. Xi Xi was mainly responsible for organizing the concept of the article and guiding the overall content. Guilin Liu polished previous versions of manuscript. Lan Wang participated in data collection, Liping Chen participated in data collection, Yanfeng Jiang commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xi Xi.

Ethics declarations

Ethics Approval

The authors declare that all procedures followed were in accordance with the ethical standards.

Consent to Participate

All the authors declare their consent to participate in this research article.

Consent for Publication

All the authors declare their consent for publication of the article on acceptance.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xi, X., Liu, G. et al. Potential Mechanism of LeTID Dynamic Behavior Dependent on Firing and Hydrogenation with Electron Injection. Silicon 14, 11443–11451 (2022). https://doi.org/10.1007/s12633-022-01831-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01831-3

Keywords

Navigation